
Introduction
Learning prerequisite chains in a graph helps people 
efficiently acquire knowledge in both known and unknown 
domains. While existing work on prerequisite chain learning 
mainly focuses on a single domain, we hypothesize that 
information from one domain can be leveraged to improve 
the prediction of prerequisite relations in another domain, 
as long as the two domains share some common concepts. 
We propose the task of unsupervised cross-domain 
prerequisite chain learning and release a new dataset, 
LectureBankCD. A sample use case for the task would be 
an expert in the Natural Language Processing (NLP) domain 
attempting to determine a learning path for concepts in an 
unfamiliar domain such as Computer Vision (CV). We 
develop two models that substantially outperform baselines 
on this task. Our Cross-Domain Variational Graph 
Autoencoder (CD-VGAE) and Domain-Adversarial 
Variational Graph Autoencoder (DAVGAE) models learn to 
effectively transfer prerequisite relations from a source 
domain to a target domain.

Materials and Methods

Cross-Domain Concept Graph: For the DAVGAE model, 
we build a graph using concept nodes only. This graph 
contains a maximum of 523 nodes, whereas the 
concept-resource graph contains a maximum of 3281 
nodes. Building a model on the concept graph is ~6 times 
more scalable in terms of space complexity.

Conclusion
We propose the cross-domain prerequisite learning 
task, a new dataset LectureBankCD, as well as two  
novel models that outperform previous machine learning 
and graph-based models. Our work has been published 
in ACL 2021.
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Figure 1. An illustration of the cross-domain prerequisite chain learning 
task. Solid edges in the diagram on the left represent labeled prerequisite 
relations between concepts in the source domain. Dotted edges in the 
diagram on the right represent prerequisite relations in the target domain 
that our models seek to predict. Both domains share common concepts 
such as Convolutional Neural Network. Knowing that Convolutional 
Neural Network -> Document Classification in the source domain helps 
our models determine that Convolutional Neural Network -> Image 
Classification in the target domain.

CD-VGAE Model: CD-VGAE is based on the VGAE 
model from (Kipf and Welling, 2016). VGAE consists of a 
graph convolutional network (GCN) encoder and an 
inner product decoder. The loss of a VGAE is as follows:
Lvgae = Eq(Z|X,A)[log p(A|Z)] - KL[q(Z|X,A) || p(Z)], where the 
first term represents a reconstruction loss and the 
second term represents the KL divergence between the 
hidden layer representation Z and a normal distribution.

In a GCN, the hidden representation of a node in the 
next layer is computed using only the information of 
direct neighbors and the node itself. We adapt the GCN 
to additionally consider the domain neighbors for each 
node. These domain neighbors are a set of common or 
semantically similar concepts from the other domain, 
such as those labeled in Figure 1. We determine domain 
neighbors by computing cosine similarities between 
concepts in the source domain and those in the target 
domain. The hidden layer representation Z is now 
calculated using 
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In addition, we change the inner product decoder in 
VGAE to a DistMult decoder (Yang et al, 2015). 
Specifically, we take the output features from the last 
layer and recover the adjacency matrix Â by learning a 
trainable weight matrix R: Â = X̂TRX̂ . Having recovered 
the matrix A, we use a sigmoid function to predict 
positive or negative labels. 

DAVGAE Model: We add a domain discriminator 
module to the graph encoder so that it can learn 
domain-invariant features of the concept nodes in both 
the source and target domains. The module predicts 
which domain each node in the hidden layer 
representation belongs to, using a two-layer neural 
network. The output of this module is 1 if the node 
comes from the source domain and 0 otherwise. Overall 
the total loss of the DAVGAE is L = Lvgae+ Ldis, where Ldis 
is a cross-entropy loss for domain prediction.

Baselines: In addition, we develop baseline models 
using machine learning classifiers as well as 
graph-based methods. For example, we adapt 
GraphSAGE (Hamilton et al, 2017) for cross-domain 
prerequisite chain learning.

Figure 2. A heterogeneous Cross-Domain 
Concept-Resource Graph built for the CD-VGAE model.

Task Formulation: We define a prerequisite relation p -> q 
as the notion that concept p must be learned prior to 
concept q. We then formulate the cross-domain prerequisite 
chain learning task as a binary classification problem. Given 
a source domain and a target domain, there are a number of 
concept pairs (p,q) in both domains. The label for each pair 
is 1 if concept p is a prerequisite of concept q and 0 
otherwise. We manually annotate every pair of concepts in 
each of three domains–– NLP, CV, and Bioinformatics (BIO). 
We release the annotations as well as university lecture slide 
resources (in free text format) for all three domains, in a new 
dataset called LectureBankCD.

Cross-Domain Concept-Resource Graph: For the 
CD-VGAE model, we build a graph Gcr=(X,A) that includes 
resource nodes as well as concept nodes from both the 
source and target domains. The adjacency matrix A consists 
of four edge types: Ac,s: edges between source concept 
nodes; Ar,c: edges between all resource nodes and concept 
nodes; Ar: edges between resource nodes only; and Ac,t: 
edges between target concept nodes. In an unsupervised 
setting, Ac,s are known, and the task is to predict Ac,t. For Arc 
and Ar, we calculate cosine similarities based on BERT or 
Phrase2Vec (P2V) node embeddings.

To initialize GraphSAGE, we provide the BERT/P2V 
embeddings of the source and target domain concepts, 
in addition to an adjacency matrix. The adjacency matrix 
is constructed from the annotations of the source 
domain prerequisite relations as well as the cosine 
similarities of BERT/P2V embeddings of target domain 
concepts. The concept node embeddings generated by 
GraphSAGE are then passed into the DistMult decoder.
Table 1. Condensed results (see writeup for full results)
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Results
Our CD-VGAE and DAVGAE models both outperform 
baseline models by a large margin. In particular, our 
models yield higher recall. This means we have a higher 
chance of recovering all the concepts required in a 
learning path, though we may predict some extra 
concepts compared to the ground truth. On principle, 
higher recall is preferred in our application setting 
because we would rather students learn additional 
concepts than miss key concepts.

With pre-training, DAVGAE improves in performance 
and outperforms CD-VGAE. Furthermore, DAVGAE 
saves space complexity by six times compared to 
CD-VGAE because DAVGAE does not necessitate 
resource nodes in the graph.


