
Introduction
Information retrieval is the process of extracting specific 
information from a large collection of unstructured 
documents and resources. This is becoming 
increasingly relevant in the modern world, where there 
is an abundance of online data that can get challenging 
to navigate. Broadly speaking, the objective of All About 
NLP (AAN) is to supply users with educational 
resources. In this part of the project, we train a classifier 
that marks resources as “good” learning materials in the 
NLP domain, and we extend the model into the CV and 
STATs domain via transfer learning.

Given the unique problem that AAN aims to solve 
through, there are no readily available datasets to train 
the classifier. This presentation will focus on the 
implementation of the end-to-end software pipeline that 
was used to scrape the internet and aggregate 
resources and their features, composing AAN’s dataset.

Methods

Future Work
It is my goal to continue developing this project in order 
to further strengthen the data backbone of AAN.

Notably, the key phrase extract, parser construction and 
web scraping stages can be significantly parallelized. 
This will increase the iteration speed of 
adding/improving features and recollecting the data.

Also, more room for improvement can always be found 
in the document parsers and their heuristics for 
extracting the structural features of the documents.

Acknowledgement
Thank you to Professor Dragomir Radev for his support 
and advice on this project and to Irene Li for her 
guidance.

Thomas George, Irene Li and Dragomir Radev

An Information Retrieval Engine for All About NLP (AAN)

Department of Computer Science at Yale University and the University of Waterloo LILY Lab

Referring to Figure 1, the pipeline accepts several forms 
of input. One can supply a set of seeding documents 
and/or an explicit list of key phrases (examples shown 
in Table 1). The seeding document URIs are forwarded 
to the DownloadManager that downloads them if they 
do not already exist in the local filesystem. Then, based 
on the file type, a parser is created to wrap each seed 
document. These parsers are forwarded through the ’1’ 
channel of the ‘Select Mode’ demux to a set of 6 
deep/statistical key phrase extraction methods (one of 
which is also specified by user input). Then these 
selected key phrases from the seeding documents are 
joined with the user-provided key phrase list.

Moving forward, the signal labelled with ‘*’ carries a 1 
because all key phrases of interest are collected. These 
key phrases are forwarded to a search engine web 
scraper (selected by the user) which then begins to 
search for the key phrases and collect the top N URLs 
for each. These URLs are sent to the 
DownloadManager, then a parser is built for each 
consequently downloaded resource. Since signal ‘*’ is 
now 1, these parsers dump features of their designated 
document into a csv and the free text into a txt.

*

Implementation Details
One aspect of this pipeline that adds seemingly 
unneeded complexity is the search engine scrapers. 
This is because they do not use APIs in order to avoid 
the financial costs of performing many queries. Rather, 
they use the selenium and bs4 packages to emulate 
users clicking through the search engines.

Another interesting facet of this data collection tool is 
the 3 parsers, which use heuristics to extract details 
from the document’s structure/contents. For example, 
the PDF parser uses two different libraries depending 
on whether the document is an academic paper or not. 
This classification is done using the formula in Figure 2.

In total, approximately 40K resources were processed by the pipeline, 
ranging across the 3 domains and 3 file types (as detailed in Table 2). 
Roughly 69% of those data points were manually annotated as positive (i.e.
useful educational resources).

The file parsers extracted 21 distinct features for each document – several 
of which are listed in Table 3. Combined with the 9 deep features (collected 
separately), the data points held a rich set of features for training the 
classifier. It ultimately achieved an F1 score of 0.94 and unveiled some 
interesting factors that characterize an educational resource as “good”.

Results

Table 1. Sample key phrase queries in the 3 domains

NLP
“word embeddings” site:.edu filetype:.pptx
“text classification tutorial” site:.edu filetype:.pdf

Figure 1. Control Flow of the AAN Data Collection Pipeline

CV
“texture classification” site:.edu filetype:.pdf

STATS
“conditional probability” site:kdnuggets.com filetype:.html

Group 1 Group 2
NumHeading # of headings NormalizedUnqiueVocab # of unique words/word
NumEqu # of equations PercentTypos % of words misspelled

NLP CV STATS Total
PPTX 1, 216 733 1,463 3,412
PDF 4,961 3,782 1,449 10,192
HTML 9,368 9,302 7,454 26,124
Total 15,545 13,817 10,366 39,728
Positive Rate 0.62 0.80 0.65 0.69

Table 3. Sample of features collected. Group 1 features are higher-level (document structure) and 
Group 2 features are lower-level (natural language structure)

Figure 2. Inequality that determines whether a PDF is a research paper or not, using its features 

Table 2. Control Flow of the AAN Data Collection Pipeline


