

# Assembling a large, cross-domain dataset for general data-to-text generation

# Amrit Rau

Department of Computer Science, Yale University, New Haven, CT

### Background

A number of text-to-SQL systems exist to convert natural language queries to queries in SQL syntax. However, in order to close the loop on dialogue systems, it is important to generate natural language from the returned results. The majority of existing datato-text literature focuses on the problem of generating multi-sentential natural realizations from an entire table; however, the task of generating a single-sentence realization from a single record is less well-covered.

## Observations

Column ontology matters for fluent, semantically valid generation. Most realizations of individual records must take into account the ontology of the record's keys. Humans naturally infer ontologies when reading tables. The literature shows that incorporating the ontological structure of input data leads to measurably better realizations.

### Semantic triples capture semantic meaning better than simple key-value

records. Semantic (RDF) triplesets encode the relevant deep ontology by the graph structure of their relations.

From a table record, its context, and its column ontology, a precisely semantically equivalent RDF tripleset can be constructed. See Figure 1 for an explanation of the relevant algorithm.

## Task

Construct a large, cross-domain dataset of semantic triples aligned with natural *language realizations. The semantic* triples should be sourced from tables.

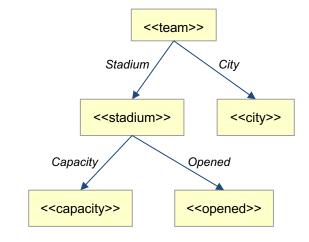
### Figure 1. An simple algorithm to convert a table and its column ontology to a set of RDF triples.

| Team               | Stadium           | Capacity | Opened | City                       |
|--------------------|-------------------|----------|--------|----------------------------|
| Amsterdam Admirals | Amsterdam ArenA   | 51,859   | 1996   | Amsterdam, The Netherlands |
| Amsterdam Admirals | Olympisch Stadion | 31,600   | 1928   | Amsterdam, The Netherlands |
| Barcelona Dragons  | Mini Estadi       | 15,276   | 1982   | Barcelona, Spain           |

#### Use ontology to construct subtables

Rule: for each non-leaf node, a subtable is generated containing that node's column and its immediate child nodes' columns.

| Team               | Stadium           | City      |      |
|--------------------|-------------------|-----------|------|
| Amsterdam Admirals | Amsterdam ArenA   | Amsterdam | Ams  |
| Amsterdam Admirals | Olympisch Stadion | Amsterdam | Olyr |
| Barcelona Dragons  | Mini Estadi       | Barcelona |      |


#### Figure 2. The workflow implemented to produce our dataset.

| Name                          | Title United States Ambas<br>State | Status                                           | Title                | Appointment | Credentials | Termination                                    | Notes          |                                |              |
|-------------------------------|------------------------------------|--------------------------------------------------|----------------------|-------------|-------------|------------------------------------------------|----------------|--------------------------------|--------------|
| Henry F. Grad                 | ly California                      | Non-career appoin Am                             | nbassador Extraordin |             | Jul 1, 1947 | Left post, Jun 22, 194                         | Accredited als | <mark>o</mark> to Nepal; resid | lent at New  |
| Loy W. Hende                  |                                    | Foreign Service of Am                            |                      |             |             | Reaccredited when Ir                           |                |                                |              |
| Chester Bow<br>George V. Alle |                                    | Non-career appoir Arr<br>Foreign Service off Arr |                      |             |             | Left post, Mar 23, 19<br>Left post, Nov 30, 19 |                |                                |              |
|                               |                                    |                                                  |                      |             |             |                                                |                |                                |              |
| 1.                            | User writes ar                     | notation on Go                                   | oale Sheet           |             |             |                                                |                |                                |              |
| 2                             |                                    |                                                  | 0                    |             |             |                                                |                |                                |              |
| 2.                            | •                                  | on server, retrie                                | 0 0                  |             |             |                                                |                |                                |              |
| 3.                            | Annotations a                      | re aligned with                                  | key-value r          | ecords      |             |                                                |                |                                |              |
| 4.                            | Heuristic is us                    | ed to guess the                                  | e subiect co         | lumn        |             |                                                |                |                                |              |
| 5.                            |                                    | le record is pivo                                |                      |             | lumn to     | nroduco on                                     | nrovimat       | to triplos                     |              |
|                               | •                                  | •                                                |                      |             |             | produce ap                                     | proxima        | te triples                     |              |
| 6.                            | Triples are wr                     | itten to intermed                                | diate JSON           | format      |             |                                                |                |                                |              |
|                               | Intermediate                       | ISON file is con                                 | werted to s          | emantic tr  | inles usir  | na the alaor                                   | ithm sho       | wn in Fi                       | n 1          |
| 7                             |                                    |                                                  |                      |             |             | ig the digol                                   |                |                                | <b>M</b> . I |

1928

1982

15.276



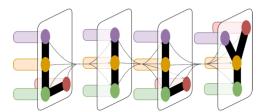
#### 2. Pivot each subtable on the parent node column

Each of the resulting rows in the pivoted subtables is an RDF triple.

| Entity             | Property | Value       |
|--------------------|----------|-------------|
| ,                  |          | Amsterdam   |
| Amsterdam Admirals | Stadium  | ArenA       |
|                    |          | Olympisch   |
| Amsterdam Admirals | Stadium  | Stadion     |
| Amsterdam Admirals | City     | Amsterdam   |
| Barcelona Dragons  | Stadium  | Mini Estadi |
| Barcelona Dragons  | City     | Barcelona   |
| Amsterdam ArenA    | Capacity | 51,859      |
| Amsterdam ArenA    | Opened   | 1996        |
| Olympisch Stadion  | Capacity | 31,600      |
|                    |          |             |

### Method

The dataset was assembled from tables from the WikiTableQuestions and WikiSQL corpora, both of which contain tables scraped from Wikipedia. The two corpora were combined and converted to spreadsheet form, then uploaded to Google Sheets. Subsequently, human annotators were instructed to generate natural language realizations from a subset of the keys for each row in the table. The annotators then highlighted the values in the row that were used in the generation. Once this was complete, the tables were pivoted to RDF form using the procedure described in Figure 2. Note that because we did not have each table's ontology, a heuristic was used to guess which column corresponded to the "subject" or principal entity of the table. This subject was used to construct an approximate ontology in which the subject was the sole parent and all other columns were children.


### Findings

In this pilot study, we generated a total of 1512 record-sentence pairs out of a possible 151113. These lexicalizations vary in topic, structure, and complexity. We find that approximating the ontology using a heuristic does not always produce semantically-correct triples, specifically in tables with multi-column subjects or implicit subject. We also find that table context (e.g. title) is often required to produce accurate semantic triples. More work is needed to understand how to best collect "gold" column ontologies from human annotators or from other sources.

#### Acknowledgement

This work was performed under the guidance of Language, Information, and Learning at Yale (LILY), led by Dragomir Radev. I would like to acknowledge Rui Zhang, Jefferson Hsieh, Abhinand Sivaprasad, Aadit Vyas, Nazneen Rajani, and Dragomir Radev as collaborators on this work. I also thank Dragomir Radev for serving as a mentor and the formal advisor for this project.





### LILY Lab