
Introduction
For the task of converting natural language to SQL
(nl2SQL) problem, many previous works have
developed various methods, e.g. training sequence-to-
sequence model with attention on the input sequence
and schema, or translate the natural language to AST
(Abstract Syntax Tree) of SQL first. These methods can
also be improved by copy from input.
However, the modeling and testing are both hard
because of existing data sets are sparse and general
form SQL. So in the project we developed a new data
set: a large amount of databases with natural language
and SQL pairs. The new data set will have more flexible
natural language sentences and standardized SQL
components. By now more than half of the data set has
been finished, and a smaller sample data set have been
finished.
My work includes 1. labeling SQL and natural language
pairs and 2. reviewing the SQL files created by others.
3. experimenting with a sequence-to-sequence model
with attention on on database schema and over the
input, using the data set we build.

Data Labeling
In the project we plan to label approximately 150
databases, each with 50 - 60 natural language to SQL
pairs: around 30 pairs will cover different SQL
components, and each may have a natural language
paraphrase.
We chose many different components in the annotated
data. We aim to generalize the data, and also
standardize it for possible models to learn. The
components are shown in table 1 by the order of priority,
if they can be used to do the same task.
By now, we have created a subset of the ultimate data
set, which conforms to the same constraints and
contains 4204 pairs in train and 632 pairs in validation,
49 databases in train, and 7 database in validation.

Results
The result is shown in table 2. Nearly all the sentences
are in correct SQL structures, but the ability of
predicting the correct column names and predicting
complex SQL of the model is poor. The reason that it
cannot predict columns correctly is that these column
names are not shown in training data, even with
schema attention. Because the columns only in the test
set is not ‘paid’ attention during training.
And the complex nested structures are harder for
sequence-to-sequence models to learn.

Conclusion
In nl2SQL task, I experimented the sequence-to-
sequence with schema attention model used by [1].
However, the data set used by [1] differs from ours in
that the training, validation, and test data set are drawn
from single, identical database during each experiment.
So the increased number of databases in our data set
lead to more bigger search space, the different corpus
and vocabulary during training and testing is also a
severe problem.
As a result, the sequence-to-sequence model can learn
a well-structured SQL, but is poor at predicting new
databases’ columns and tables and more complex
structures. The schema attention during training is not
working well.

Dongxu Wang, Tao Yu, Dragomir Radev
Seq2SQL Using Seq2seq with Attention Model
LILY Lab, Yale University

Table 1. SQL Components and Labeling Priority

Figure 1. Sequence-to-Sequence Model with Attention of
Database Schema

Table 2. Predicted Accuracy of Different SQL Components

LILY Lab

Approach
Experimented the sequence-to-sequence model with
attention on the database schema and over the input.
The model structure is shown in Figure 1, using our
newly built dataset, whose train and test data are drawn
from separate databases.
The encoder uses bidirectional RNN. The decoder
attention layer uses Bahdanau attention layer, and the
database schemas embedding is constructed with the
natural language interpretation of table names and
column names.
Previous work using sequence-to-sequence model in
includes applying sequence-to-sequence model with
attention over input, schema, with copy mechanics. Or
applying augmented pointer network on different
components of SQL structure. Or applying attention-
based seq2tree (AST) method on programming
languages.

Evaluation
Here we use a evaluation method based on
AST(abstract Syntax Tree). That is transforming
generated SQL queries and gold SQL queries into
ASTs. Then we compared the different components of
the two syntax trees. We split SQL queries into the
following components and compute the recall, precision
and F1-scores for:
a) select columns
b) select all aggregation functions
c) select all without aggregation functions
d) where expressions
e) operations in where
f) nested queries in where
g) group by
h) having
i) order by
j) except, union, intersect

Reference [1] Improving Text-to-SQL Evaluation Methodology Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ramanathan, Dhanalakshmi Ramanathan, Sesh Sadasivam, Rui Zhang and Dragomir Radev Proceedings of ACL 2018

Who | are | soccer | players

SELECT | name | FROM | Players

SQL Components

SELECT (multi)

FROM(multi)

DISTINCT(multi)

WHERE

JOIN

UNION, INTERSECT, EXCEPT

NESTED

EXISTS / NOT IN

ORDER BY / LIMIT

GROUP BY / HAVING

Expressions:

Arithmetic Math (+-*/)

String (LIKE, %)

Opertors (NOT, AND, OR, !=, >=, <=)

Aggregation (COUNT, SUM, AVG, MAX, MIN …)

