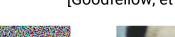
Yale

Robust Multilingual Part-of-Speech Tagging via Adversarial Training Michihiro Yasunaga, Jungo Kasai, and Dragomir Radev

Department of Computer Science, Yale University

Introduction

Adversarial examples: very close to original inputs but are likely to be misclassified by the current model [Goodfellow, et al 2015]



"nematode"

8.2% confidence

"panda" 57.7% confidence

 $sign(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$

 $\epsilon sign(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "gibbon" 99.3 % confidence

Adversarial training (AT) aims to improve robustness to input perturbations by training on both clean examples and adversarial examples.

Yet, the specific effects of the robustness obtained from AT are still unclear in the context of **NLP**, e.g.,

- how to interpret perturbations on natural language input?
- Is AT language/task dependent?

This paper proposes and analyzes a neural POS tagging model that exploits AT. In our experiments on PTB-WSJ and the Universal Dependencies (UD) dataset (27 languages), we not only find that AT improves the overall tagging accuracy, but also obtain the following insights into AT in the context of NLP:

1) AT prevents over-fitting well in low resource languages

2) AT boosts tagging accuracy for rare/unseen words

3) the improved tagging performance by AT contributes to downstream tasks, e.g., dependency parsing

4) AT helps the model to learn cleaner word representations

Thus, AT can be interpreted from the perspective of natural language. We also find:

5) AT is generally effective in different languages and different sequence labeling tasks.

These positive results motivate further use of AT in NLP.

Tagging Models

1. Baseline: BiLSTM-CRF

- Character-level BiLSTM
- Word-level BiLSTM
- (CRF) for global inference of tags

2. Adversarial Training (AT)

At each training step, we first generate adversarial examples by adding small perturbations to the inputs in the direction that significantly increases the loss function. Then, the model is trained on the mixture of clean examples and adversarial examples.

$$oldsymbol{\eta} = \epsilon \, oldsymbol{g} / \|oldsymbol{g}\|_2$$

$$oldsymbol{s}_{\mathrm{adv}} = oldsymbol{s} + oldsymbol{\eta}$$

[Miyato et al., 2017]

Experiments & Results

1. Dataset

- PTB-WSJ (English)

for POS tagging

2. Results

outperforming most existing works.

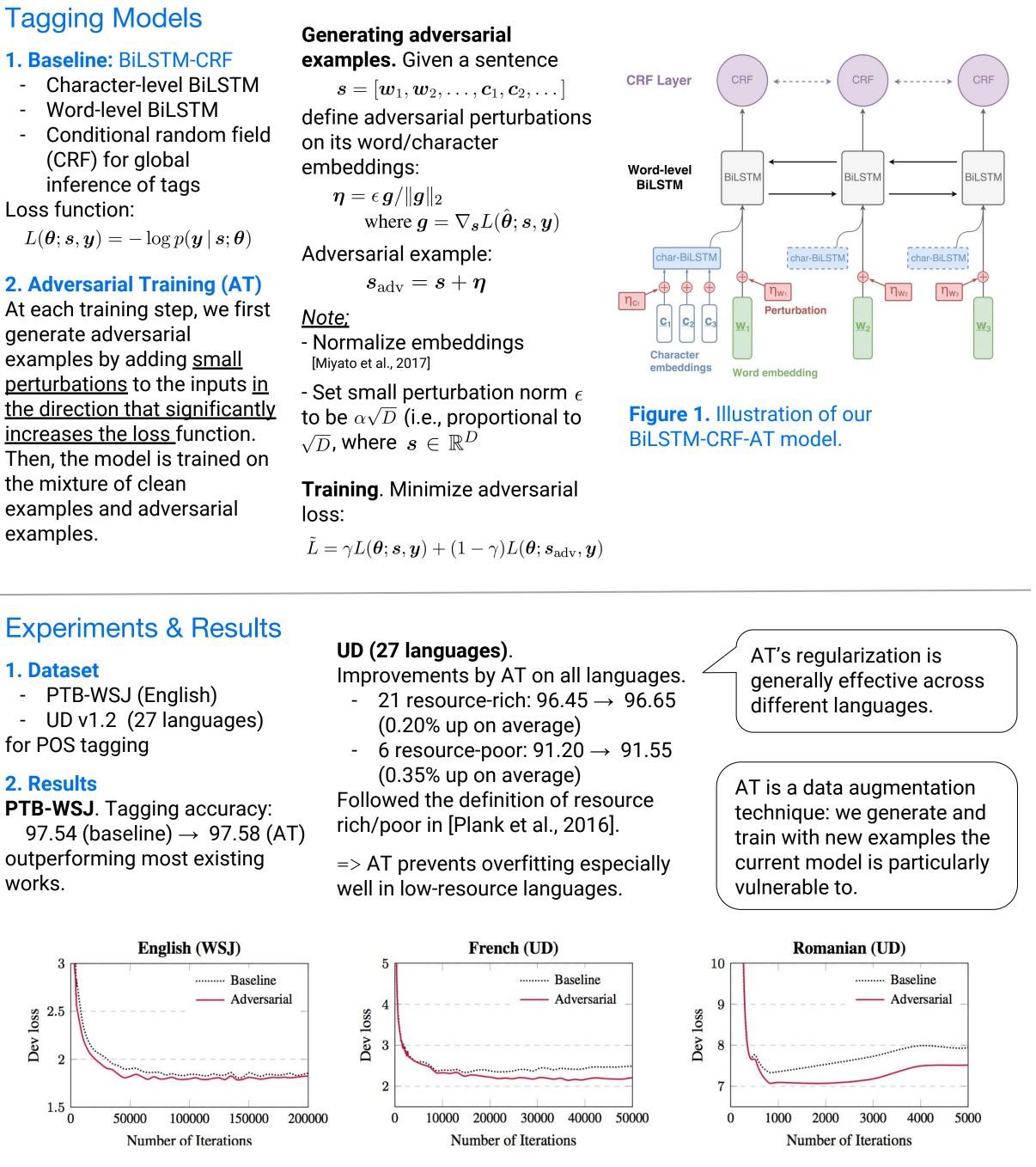


Figure 2. Learning curves for three representative languages (Romanian is low resource)

•	
Ana	lysis

1. Word-level Analysis

Motivation: poor tagging accuracy on rare/unseen words is a bottleneck in existing POS taggers. Does AT help for this issue?

- Tagging accuracy on words
categorized by the frequency of
occurrence in training.

English (WSJ)

Word Frequency	0	1-10	10-100	100-	Total
# Tokens	3240	7687	20908	97819	129654
Baseline	92.25	95.36	96.03	98.19	97.53
Adversarial	92.01	95.52	96.10	98.23	<u>97.57</u>
French (UD)					
Word Frequency	0	1-10	10-100	100-	Total
# Tokens	356	839	1492	4523	7210
Baseline	87.64	94.05	94.03	98.43	96.48
Adversarial	87.92	94.88	94.03	98.50	96.63

- Tagging accuracy on <u>neighbor</u> words

English (WSJ)

Word Frequency	0	1-10	10-100	100-	Total
# Tokens	6480	15374	41815	195637	259306
Baseline	97.76	97.71	97.80	97.45	97.53
Adversarial	98.06	97.71	<u>97.89</u>	97.47	<u>97.57</u>
French (UD)					
Word Frequency	0	1-10	10-100	100-	Total
# Tokens	712	1678	2983	9045	14418
Baseline	95.08	97.08	97.58	96.11	96.48
Adversarial	95.37	97.26	97.79	96.23	96.63

=> Notable improvements on rare words and neighbors of unseen words

2. Sentence-level Analysis

Sentence-level accuracy & downstream dependency parsing performance

English (WSJ)

	Stanford Parser		Parsey McParseface		
level Acc.	UAS	LAS	UAS	LAS	
59.08	91.53	89.30	91.68	87.92	
59.61	91.57	89.35	91.73	87.97	
-	(92.07)	(90.63)	(91.98)	(88.60)	
	•				
	59.08	59.08 91.53 59.61 91.57	59.08 91.53 89.30 59.61 91.57 89.35	59.08 91.53 89.30 91.68 59.61 91.57 89.35 91.73	

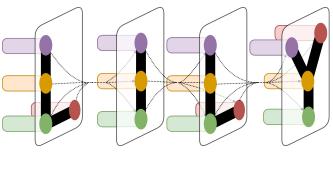
	Sentence-	Parsey Universal		
	level Acc.	UAS	LAS	
Baseline	52.35	84.85	80.36	
Adversarial	53.36	85.01	80.55	
(w/ gold tags)	-	(85.05)	(80.75)	

Motivation: does this AT POS tagging model generalize to other sequence labeling tasks?

Chunking (PTB-WSJ). F1 score: 95.18 (baseline) \rightarrow 95.25 (AT)

Named entity recognition (CoNLL-2003). F1 score: 91.22 (baseline) \rightarrow 91.56 (AT)

=> The proposed AT model is generally effective across different tasks.



LILY Lab

- Robustness to rare/unseen words enhances sentence-level accuracy

- POS tags predicted by the AT model also improve downstream dependency parsing. Sentence-level accuracy is important for downstream tasks.

3. Word Representation Learning Motivation: does AT help to learn more

robust word embeddings?

- Cluster words based on POS tags, and measure the tightness of word vector distribution within each cluster (using cosine similarity metric)

English (WSJ)

POS Cluster	NN	VB	JJ	RB	Avg.
l) Initial (GloVe)	0.243	0.426	0.220	0.549	0.359
2) Baseline	0.280	0.431	0.309	0.667	0.422
3) Adversarial	0.281	0.436	0.306	0.675	0.424

French (UD)

POS Cluster	NOUN	VERB	ADJ	ADV	Avg.
1) Initial (polyglot)		0.233			
2) Baseline	0.258	0.271	0.262	0.701	0.373
3) Adversarial		0.272			0.379

=> AT learns cleaner embeddings (stronger correlation with POS tags)

4. Other Sequence Labeling Tasks

Conclusion

- Interpreted the effects of AT from NLP perspective - Confirmed the general applicability and efficacy of AT