
Introduction
Anyone who has tried to find parking in New York City 
knows that the struggle does not end once an open 
space is found. Often times, after parking, one will find 
themselves standing outside for several minutes 
struggling to discern the true meaning of several 
seemingly contradictory parking signs. This project 
attempts to solved this problem using computer vision 
and some natural language parsing. Street sign 
classification is a fairly well researched field, due to the 
interest in self driving cars, however relatively little 
attention has been given to reading parking signs. 
Analyzing parking signs introduces another layer of 
complexity since the system must not only do 
classification, but also do textual recognition and parsing. 
Additionally, in order to make the project practical and 
user friendly the front end was built as an iOS app which 
is used to simply take a picture of the parking sign in 
question. The image is then sent to a backend which 
processes the image and parses the text. The app then 
simply tells the user whether or not they can park at the 
moment they inquired.
Materials and Methods
The first important step was to recognizing each parking 
sign as an object both separate from it’s background and 
distinct from the other signs surrounding it. OpenCV is 
used to detect the contours of both the red and green 
signs. Since these images are being taken “in the wild” it 
is necessary to merge contours close to each other and 
then crop using the surrounding rect. After the initial 
cropping of the image is finished each individual sign 
needs to be read using optical character recognition, 
which was done by the Google Vision Api. This bundle of 
text and metadata was then used to create a parsed set 
of “green hours” and “red hours.”  Due to the restrictions 
of a small testing dataset, the most effective approach 
was to simply hard code a set of parsing rules. This 
pipeline is hosted on a Google Virtual Machine and 
made accessible through an API. The client for this 
project is a simple iOS app, used to simply take a picture 
of the parking sign in question and upload it to an S3 
bucket. After the image's url is sent to the backend and 
the parking signs are parsed the frontend simply checks 
the parsed set of dates against the current date and 
time.

Results
Evaluating the accuracy of the system was somewhat 
difficult since it was hard to collect a large dataset and 
there was no easy way to generate a reference 
database of correct results. Ultimately a dataset was 
collected using a web scraper to download images 
related to “NYC parking signs” from the web. Out of the 
300 images downloaded 37 were usable for testing. In 
all, the pictures provided a wide array of different sign 
formats and image quality. The server side algorithm 
was analyzed by running it against each image and 
inspecting each generated parse manually. The results 
indicated that one of the most significant points of failure 
is at the cropping stage. Most of the photos which failed 
at this step were taken at an angle, had a shadow cast 
across them or were of poor resolution.
Conclusion
Testing revealed that original image quality played a 
major role in the accuracy of the final result. While, the 
app performs very well when images are taken straight 
on with minimal glare and shadow, it is unrealistic to 
assume that users will be able to constantly capture 
such high quality images of signs in the real world. It will 
therefore need some refining if it is to be released and 
used practically. While more fundamental developments 
in the field of computer vision may be needed in order to 
truly produce a foolproof product, there are a number of 
potential tweaks that could be made to improve the 
current approach. One of the major points of failure for 
instance took place during the cropping stage. This is in 
part because RBG values for parking sign “red” and 
“green” vary depending on the lighting and can at times 
be picked up on in the background. A potential solution 
would be to use another graphical indicator to determine 
the top and bottom of a sign, such as the horizontal lines 
which separate them. Another way to improve the OCR 
step would be to create some graphical tools on the front 
end to instruct the user on how to take the best picture.
Acknowledgement
Thank you to Professor Radev and Yale University’s department of 
Computer Science.

Carter Levin

Computer Vision To Interpret Parking Signs

1 Lily Lab, Yale University

Figure 1. The neon green denotes the rects drawn by openCV 
for both green and red signs respectively. The crop is imperfect 
but allows 

Figure 2. Text and metadata generated by the Google Vision API Figure 3. Screen shot of user facing iOS 
client app.

LILY Lab

0

0.068

0.135

0.203

0.27

Cropping OCR Parsing

Table 1. Table shows percent failure at each stage of the 
system.


