
Introduction
Video	games	are	a	popular	 space	of	recreation	and	an	even	
more	exciting	place	to	push	the	limits	of	machine	learning.	A	
major	goal	for	many	computer	 scientists	is	to	create	artificial	
intelligence	that	can	outperform	 any	human.	Q	learning	and	
developing	 complex	policy	gradients	have	proven	to	yield	
fantastic	results,	however	in	this	project	my	focus	is	quickly	
teaching	an	agent	how	to	reasonably	play	the	game	Super	
Smash	Bros.	Melee	through	 vision.	We	aim	to	show	that	by	
feeding	an	agent	gameplay	footage	that	resembles	a	human	
player’s	optimal	performance,	a	machine	learning	model	can	
produce	an	agent	capable	of	 replicating	the	proper	actions	for	
each	state.	Our	strategy	map	each	frame	of	the	game,	screen-
captured	images	of	gameplay,	to	game-moves,	which	act	as	a	
label,	much	like	an	image	classification	problem.	We	develop	
two	distinct	models	 to	accomplish	this	task,	both	of	which	make	
use	of	a	Convolutional	Neural	Network	(CNN)	with	an	AlexNet
architecture	to	process	frames	and	output	moves	in	real	time	to	
simulate	gameplay.	The	first	model	uses	a	Vanilla	CNN	and	bases	
its	output	on	 the	previous	 frame,	whereas	the	second	model	
uses	a	time-distributed	 CNN	that	takes	as	input	a	sequence	of	
previous	 frames.
We	hope	 to	show	that	this	form	of	learning	 is	able	to	quickly	
train	an	agent	to	adopt	a	human	player’s	most	frequently	used	
inputs.	We	then	integrate	the	models	into	a	system	that	allows	
the	agents	to	play	in	real	time	against	a	live	opponent.

Materials and Methods
The	process	for	creating	the	data	used	in	this	project	was	
divided	 into	three	distinct	parts:	video	collection,	 reduction	of	
the	input	space,	and	image	sequence	generation.	The	game	was	
played	using	a	Dolphin	emulator	allowing	us	to	leverage	
QuickTime	Player	to	record	our	computer	 screen.	The	footage	
was	then	split	up	 into	images	at	15	frames	per	second(fps),	
versus	the	60fps	it	was	recorded	at.	A	special	version	of	the	
game	allows	us	to	place	a	graphic	in	the	upper	corner	of	the	
screen	that	displays	the	user’s	controller	inputs	 in	real	time.	The	
labels	for	each	image	were	created	by	checking	this	graphic.

In	order	 for	the	model	 to	form	strong	correlations	in	the	data	we	
reduced	the	input	 space	by	limiting	gameplay	to	one	distinct	
character	matchup	and	a	single	 stage.	We	further	 reduced	
complexity	by	choosing	characters	with	unique	 shapes	and	
colors,	a	static	stage,	and	a	fixed	camera	setting.

Model Descriptions
The	first	model	utilizes	a	Vanilla	AlexNet structure	consisting	of	3	convolution	 and	
pooling	 layers	followed	by	a	flatten	layer	and	3	fully	connected	layers.	This	design	
is	shown	 in	figure	1.

The	second	model	 implements	a	time	distributed	 version	of		AlexNet.	By	taking	
sequences	of	images,	representing	 intervals	of	time	during	 the	gameplay,	the	
network	aims	to	capture	temporal	information.	The	model	 sends	each	image	in	a	
sequence	through	 the	CNN	portion	 of	the	network	independently.	 It	then	collects	
and	flattens	the	outputs	and	uses	them	as	input	 to	the	fully	connected	layers	
that	follow.	This	structure	is	shown	 in	figure	2.

Conclusion
This	project	showed	CNN’s	ability	to	be	able	to	help	a	model	replicate	appropriate	
actions	when	given	footage	of	desired	performance.	Considering	 that	the	
differences	between	moves	were	based	on	a	character	that	took	up	such	a	small	
portion	 of	very	large	image	(1800x2188	pixels),	 that	the	stage	background	was	
dynamic,	and	that	the	number	of	output	classes	was	so	large,	we	were	pleased	with	
the	model’s	accuracy.	It	could	be	improved	by	either	altering	the	game	to	solve	the	
above	issues	or	by	simply	collecting	much	more	data.	Despite	all	of	these	obstacles,	
the	agent	was	able	to	identify	and	reproduce	 the	inputs	produced	most	frequently	
by	a	human	player	in	real	time.	This	helps	show	the	validity	of	making	learning	 into	
an	image	classification	problem	for	a	lightweight	and	data-driven	solution.
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Figure1. Vanilla CNN

Figure 3. Falco Sprite

Table 1. Results of different models based on variations of input training data
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Results
The	results	seen	immediately	were	very	promising.	 The	accuracy	of	the	network	
showed	a	great	deal	of	success,	while	prediction	values	were	exceptionally	
skewed.	The	output	classes	for	the	moves	‘null’,	 ‘left’,	and	‘right	a’	were	
consistently	predicted	at	a	significantly	higher	 rate	than	other	classes.	This	is	due	
to	the	fact	that	the	data	itself	was	similarly	skewed.	While	there	were	a	large	
number	of	potential	 inputs	to	the	game,	many	of	these	inputs	are	very	
situational	and	not	used	regularly.	Additionally,	 given	the	speed	at	which	images	
were	captured	it	is	impossible	 for	a	human	player	to	provide	 inputs	 to	the	game	
at	all	time	steps.	As	a	result,	‘null’	 dominated	 the	input	data	and	while	it	is	a	
useful	 state,	less	seen	inputs	 such	as	moves	to	help	the	character	recover	were	
overlooked	 by	the	network.	Thus,	the	network	was	very	successful	in	identifying	
the	most	common	 inputs	and	input	 sequences	performed	by	the	human	actor;	
however	these	inputs	were	not	what	one	might	expect	to	see.	

Fixed	Camera Image	Augmentation HUD Loss Accuracy
No No Yes 0.04 98.8%
No No No 2.33 47%
No Yes No 1.25 45%
Yes No No 2.06 55%
Yes Yes No 1.28 52%

Figure 2. Time-distributed 
neural network design

Figure 5. Heat maps showing highest points of activation representing locations in 
the image most strongly influencing the networks’ classification decisions. 
Left: Including the user input graphic in training data causes unwanted activation.
Right: Heat map on image with graphic removed solves this issue.

Figure 4. Captain Falcon Sprite


