
Introduction
Crossword constructors increasingly rely on 
computational tools to fill grids and finish puzzles. A 
solution to a crossword puzzle can be viewed as a 
constraint satisfaction problem, where each fill is a 
variable and the crossing points and lengths are 
constraints to be satisfied. With this framework, it is 
possible to build crosswords more complex than could 
be generated by human constructors. We apply methods 
used to solve weighted constraint satisfaction problems 
to generating three-dimensional crossword puzzles. 

Weighted CSPs
Filling a crossword can be considered as a constraint 
satisfaction problem, where we want to select some 
number of fills as variables such that they satisfy all the 
length and crossing constraints. Every variable has a 
large search space as every combination of letters could 
feasibly be an acceptable fill. Crossword constructors 
make use of large corpuses of previously used fills with 
associated “goodness” scores to assist in puzzle 
construction. Using these scores we can evaluate 
partially completed CSPs, turning our problem into a 
weighted CSP. We can then prune our search tree once 
we find any acceptable solution. This method is called 
branch & bound. The initial solution need not be very 
good in order to vastly improve our computation time. 
We want to sort our potential fills so that some solution 
can be found. This is done by giving fills an adjusted 
score based on the frequency of their letters and their 
goodness score and then bounding solutions based on 
the total goodness score.

Rotational Properties
In generating three-dimensional puzzles, the breadth of 
the search tree turns out to be much more problematic 
than the depth. After a large number of fills have been 
placed, due to the high number of crossing constraints, 
there are very few options for the remaining fills. In 
order, to reduce the breadth of our search tree at the 
lower levels, we take advantage of the rotational 
symmetries of our puzzles. In particular, a solution forms 
a 3D puzzle when viewed from the top, left, or right 
(Figure 2). Rather than placing fills one at a time, we 
place 2D solutions one at a time in each of these 
directions. These solutions enforce immediate 
constraints on each other. Furthermore, these 
constraints can be applied in constant time (Figure 2). 

Acknowledgement

Thank you to Matt Ginsberg for providing the code for Dr.Fill which 
inspired many of the techniques used in this project. Also thank you to 
Dragomir Radev for advising the research.

Michael Menz1

Generating 3D Crosswords as a Weighted Constraint Satisfaction Problem

1Yale College, New Haven, CT.

Figure 1. The two graphs above shows crossing 
constraints of a NYT puzzle (top) and a 4x4x4 puzzle 
(bottom).

Figure 3. 4x4x4 Crossword. Clues are taken from a database of syndicated crosswords.

Why is this hard?
Figure 1 shows two graphs where the nodes in the graphs 
are words in a puzzle and an edge connects two nodes if 
the words cross. The graph on top is for a New York 
Times Thursday puzzle and the graph on the bottom is for 
a 4x4x4 3D puzzle. The NYT puzzle has densely 
connected pockets that are connected to each other by 
only one or two crossing constraints. Thus, these areas 
can be filled almost independently. This is not the case for 
our 4x4x4 puzzle.

Limited Discrepancy Search
One of the issues with branch & bound is that the search 
can become stuck in some large branch of the tree. This 
is usually bad because we believe that our heuristics will 
allow us to find the best solutions in any branch 
relatively quickly. One way out of this is to stop 
searching a branch after some number of 
“discrepancies”. In our application, a discrepancy occurs 
when we try to place a fill that has already been placed 
in the puzzle. When the number of discrepancies caused 
by a fill exceeds some threshold, we leave the branch of 
the tree that first involved that fill.

Results
The methods we apply allows us to construct 4x4x4 
puzzles in fractions of a second. We also constructed a 
few 5x5x5 puzzles, but this required much more 
computation time and had significantly lower scored fills. 
One of the best scoring 4x4x4 puzzles is shown in 
Figure 3. 

Figure 2. The crossword of Figure 3 shown from the front (red), the side 
(purple), and the top (blue). A rotation can be applied to the crossword to 
obtain a new 4x4x4, with the front as the top, the side as the front, and the 
top as the side. We can continuously permute in this manner, to 
progressively stack 4x4 puzzles from the front and the fill the cube. If we 
have added k puzzles in the each of the other directions, then we will have 
already filled the first k down and across clues in the next 4x4 we add to 
the front. This greatly restricts our search space, and these puzzles can be 
found with a dictionary lookup.


	Slide Number 1

