
Introduction
One of the key lessons from the recent work in Natural 
Language Processing (NLP) is that vectorization of 
words, i.e. word embeddings, play an important role in 
various tasks. For instance, Word2Vec, developed by 
Mikolov et al. preserve a linguistically sensible linear 
structure. Such results encourage us to see word 
embedding as a good representation of semantics. 
Moreover, pre-trained word embeddings are often used 
as an initialization point for many tasks such as Machine 
Translation and Part-of-Speech Tagging. Though 
monolingual word embedding has been contributing to 
semantics and many other sub-fields in NLP as above, 
multilingual embedding has yet to be explored 
extensively. First of all, since monolingual embedding 
turns out to preserve semantic relations between words, 
it is encouraging to superpose multiple language word 
embeddings in the same vector space and extend our 
notion of semantics to multiple languages. Furthermore, 
multilingual embedding can potentially enrich our 
monolingual learning in languages with less data than 
English as we might be able to transfer a model in 
English to a model in another language. Motivated by 
these insights, this research project explores techniques 
for multilingual word embeddings in the literature. In 
particular, we focus ourselves on a type of techniques 
that bridge individually trained word embeddings across 
different languages. This type of technique has a 
practical advantage in comparison to the approaches 
that require word embeddings for multiple languages at 
the same time; it does not require any aligned dataset 
such as the Europarl corpora, and therefore it can utilize 
a larger amount of data available. 

Proposed Method
Existent cross-lingual word embeddings methods can 
be roughly categorized into two approaches: connecting 
pre-trained monolingual word embeddings and joint 
learning across languages. The former includes Mikolov 
et al’s attempt to superpose two vectors spaces 
generated from the Skipgram algorithm corresponding 
to two different languages through a linear 
transformation. Such an approach requires word pairs to 
formulate a quadratic optimization objective function. 
The objective is optimized using the stochastic gradient 
descent algorithm. 
The latter includes the Bi-skip algorithm proposed by 
Luong et al. In the vanilla Skipgram scheme, we train a 
model to predict words around each word in one 
language, but the Bi-skip model jointly train a model that 
spans across two distinct languages. It makes the use 
of aligned sentence data such as the Europarl corpora 
and first align words in sentences using the Berkeley 
Aligner. Then, instead of just training a model predicting 
words around each word in one language, we train a 
model that predicts words around each word in one 
language, an aligned word, and words around the 
aligned word in the other language. Although such a 
method achieves systematic joint learning, it requires 
paired data sets, and such datasets might not be 
available for a language of interest, and this limitation 
undermines the practical applications of cross-lingual 
word embeddings since one potential application of 
cross-lingual word embeddings is transfer learning from 
a popular language to a language that suffers data 
scarcity. Therefore, we proceed with the former type of 
approaches.
However, Mikolov et al’s method causes a problem in 
optimization. Since they use the stochastic gradient 
descent algorithm, the optimization process does not 
terminate after a finite number of updates, and it would 
require parameter tuning, which becomes costly as we 
align more pairs across more languages. We address 
this issue by incorporating the conjugate gradient 
descent method, which for each of d dimensions  
terminates after at most d time steps where d is the 
number of word embeddings. Moreover, this method 
directly allows for L-2 norm regularization.  

Experiments
The CBOW Word2Vec models are trained with 2.8 
billion English words from the British National Corpus, 
Wikipedia, and ukWaC, and 1.6 billion Italian words 
from itWaC to generate 300 dimensional 200K word  
(d=300). For both of the languages, the window sizes 
for the Word2Vec algorithm are all five, meaning we 
define the context as the five words from each side of a 
word. The learned vectors are normalized. Following 
Dinu et al, 6500 English-Italian translation pairs are 
extracted from a dictionary built from Europarl corpora. 
Then, the 6500 pairs randomly split into 5000 pairs of 
the training set and 1500 pairs of the test set for linear 
alignment. Table 1 shows the result. It should be noted 
that the regularization hurt the performance. We also 
train the linear transformation, only using 1000 pairs out 
of the training set. Seen in Table 2 are the results. We 
observe that L-2 norm regularization significantly 
improves performance. Although we would need more 
systematic analyses to draw a conclusion, we can argue 
that over-fitting is unlikely to be happening in the case 
where we have 5000 word pairs. Lastly, seen in Figure 
1 is the distribution of the number of time steps required 
for the conjugate descent algorithm to converge, 
demonstrating that it efficiently optimizes the loss.

Conclusion and Future Work

We have succeeded in implementing an efficient 
deterministic optimization algorithm that terminates at 
a finite number of time steps. This method enables us 
to learn alignment between vectors spaces across 
languages from a large number of translation word 
pairs. Nonetheless, the results show that the learn 
alignments are not accurate enough to be applicable to 
translation task. One obvious linguistic problem with 
our methodology is that we fail to capture multiple 
meanings of words. Moreover, we do not provide a 
connection between the Word2Vec objective function 
and the alignment objective function; the Word2Vec 
employs an inner-product based loss, but our 
alignment objective function is quadratic. Replacing the 
quadratic loss by an inner-product based could 
improve alignment accuracy. 
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Table 1. Test results after alignment training on 5000 
translation pairs from English to Italian. Precision@5 
denotes the 5-best accuracy and so forth. 

Table 2. Test results after alignment training on 1000 
translation pairs from English to Italian. 

Figure 1. The number of conjugate directions need until 
it converges up to the threshold of 1e10. 

Figure 1. An example PCA example by Mikolov et al 
between English and Spanish. 


