
Introduction
Semantic parsing is the process of mapping natural 
language sentences to formal meaning representations. 
Semantic parsing techniques can be performed on 
various natural languages as well as task-specific 
representations of meaning. A semantic parser can be 
learned in a supervised or semi-supervised manner in 
which the natural language sentence is paired with either 
a logical form or its denotation. The logical forms may be 
database queries, dependency graphs, lambda-calculus 
terms, among others. A common approach has been to 
induce semantic parsers from data with the use of a 
probabilistic grammar such as a combinatory categorical 
grammar. However, recent advances in deep learning 
have led to neural semantic parsing in the form of 
encoder-decoder networks which have been used for 
tasks such as machine translation. Such sequence to 
sequence models are usually combined with an attention 
mechanism which weighs the input according to its 
importance at the current decoding process timestamp. A 
recent work enhanced this architecture by constraining 
the decoding process to output a tree rather than a 
sequence. The motivation behind this choice is the 
compositional nature of the logical forms the model is 
supposed to output. With this in mind, we aim to test the 
influence of encoding the input as a tree. Recursive 
Neural Networks take as input a constituency or 
dependency tree of an input sentence and recursively 
build a representation of the sentence. These models 
have been used for tasks such as a fine-grained 
sentiment analysis and textual entailment and more 
recently to machine translation, with improved results on 
a Chinese-English corpus. 

Materials and Methods
The main data throughout out experiments was the 
GeoQuery dataset developed by Ray Mooney’s group at 
the University of Austin. This dataset contains natural 
language queries about U.S. geography and their 
associated Prolog queries. The dataset consists of 880 
total examples, usually split into a training and tests sets 
of size 680 and 280.  We follow a common 
preprocessing technique for the dataset and use De 
Brujin index notation for variable-name standardization.

Experiments
We perform a hyper-parameter search over the size of 
the word embeddings {100,150,200,250,300}, the 
recurrent layer size (same as word embeddings) as well 
as the dropout probability used {.2, .3, .4, .5}. This was 
done via 5-fold cross validation on the 680 training 
examples. We do not use a cutoff for word frequency or 
maximum length of the query. All out-of-vocabulary 
words are mapped to a special token UNK. We use 
RMSProp for optimization, a batch size of 20 and clip 
gradients at 5. We evaluate the models based on 
sequence accuracy, token accuracy and denotation 
accuracy. Initial results have not been positive. The 
parameters which give the best results (word 
embeddings of size 300 and dropout .5) output a token 
accuracy of ~68%, while state-of-the-art methods 
perform ~90%. 

Conclusion and Future Work
We attempt to adapt a model that gives improved results 
in the task of machine translation to the task of semantic 
parsing. Although initial results have not been promising, 
improvements can be made through a more extensive 
hyper-parameter tuning as well as refinement of the 
architecture. The original paper on machine translation 
on which the experiments were based uses much larger 
word embeddings (512 dimensions), hidden layer size 
(1024 dimensions) and vocabulary size (30,000 most 
frequent words). Also, while the attention mechanism 
includes coverage, it does not include a copying or 
pointer-network mechanism, which has been shown to 
improve results in such tasks. Often where the model 
predicts the the majority of tokens correctly, the model 
incorrectly outputts named-entities which can be copied 
from the source input. Additionally, tests should be 
performed on other semantic parsing datasets, 
particularly ones of larger size such as OVERNIGHT 
and WikiSQL which contain 26,098 and 80,654 
examples respectively. 
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Input Query:  
How many states border the state that 
borders the most states ? 

Logical Form: 
_answer ( NV , _count ( NV , ( _state 
( V0 ) , _next_to ( V0 , NV ) , _most 
( V0 , NV , ( _state ( V1 ) , _next_to ( V1 
, V0 ) , _state ( V0 ) ) ) ) , V3 ) ) 

Constituency Parse Tree: 
(ROOT 
  (SBARQ 
    (WHNP 
      (WHADJP (WRB How) (JJ many)) 
      (NNS states)) 
    (SQ 
      (VP (VB border) 
        (NP 
          (NP (DT the) (NN state)) 
          (SBAR 
            (WHNP (WDT that)) 
            (S 
              (VP (VBZ borders) 
                (NP (DT the) (JJS most) 
(NNS states)))))))) 
    (. ?)))

Figure 1. Example query-logical form pair from the GeoQuery dataset

as well as its corresponding constituency parser provided by Stanford 
CoreNLP which demonstrate the compositional nature of the 

dataset. 

Figure 3. Bidirectional Tree Encoder - the encoding for 
a sentence is calculated in a combined bottom-up and 

top-down manner 

We adapt a syntax aware encoder-decoder model used 
in machine translation for our task of semantic parsing. 
The input query is parsed to a constituency tree and then 
binarized. We make use of Stanford CoreNLP tools for 
parsing. The encoder decoder model uses Tree-GRU 
units, analogous to the Tree-LSTM units originally used 
for Recursive Neural Networks. Tree-GRU units build 
upon vanilla GRU units by combining input from the 
children nodes. In addition to the bottom-up method 
which builds a representation of the subtrees at the root 
node, our model uses a bidirectional encoding which 
combines the bottom-up approach with a top-down 
encoding. The motivation for this addition is that the leaf

Figure 2. Binary Tree-GRU - equations for the Tree-GRU
used in Recursive Neural Networks on constituency parses 

nodes are only encoded using sequential information 
and do not receive any syntactic information from higher 
up in the tree. This draws on sequence to sequence 
models which often employ a bidirectional encoding for 
improved results. An attention mechanism is used over 
the encoding. As the non-leaf nodes encode more 
information than leaf nodes, the model prefers to attend 
over non-leaf nodes. This can lead to repetition in the 
decoding process. To alleviate this problem, a coverage 
mechanism prevents the model from consistently 
attending to the same encoding part by keeping track of 
the nodes attended to previously. 
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