Training Language Models on Mathematical Text
Yale Zhangir Azerbayev, Hailey Schoelkopf, Sean Welleck”, Dragomir Radev

*University of Washington

Introduction

Recent years have seen tremendous progress in
applying pre-trained language models to reasoning
tasks that require generating natural language or
language-like responses. For example, language
models pre-trained on code have become popular
for code generation tasks, language model-guided
tree search has become popular in formal
mathematics, and large models pre-trained on math
have been successful for natural language
quantitative reasoning.

This project seeks to fine-tune language models on
large corpora of unstructured mathematical text to
support research into the reasoning abilities of
language models.

Data

To train our models, we collect the proof-pile, a
corpus of ~35GB of mathematical text comprising
~12B tokens. The dataset consists of the following
sources

ArXiv.math (35GB)

Open-source math textbooks (50MB)
Formal mathematics libraries (500MB)
Math Overflow and Math Stack Exchange
(500MB)

Wiki-style sources (50MB)

e MATH dataset (6MB)

Models

For our fine-tune, we use a Pythia-1.3B model, an
open-source model from EleutherAl similar to

GPT-Neo 1.3B. We train for 40,000 steps. We call
our fine-tuned model proofGPT-v0.1.

train/lm_loss

10

N

Step

10k 20Kk 30k

Fig 1. proofGPT-v0.1 training loss curve

NL: Let R be a ring, with M an 1deal of . Suppose that every element of K which 1s not in
M 1s a unit of K. Prove that M 1s a maximal ideal and that moreover it is the only maximal

ideal of K.

Code-davinci-002 output:

theorem 10 {R : Type*} [ring R] (M : ideal R)
(M : VX :R, x¢& M— is unit x):
is maximal M A ¥V (N : ideal R), is maximal N —- N =M

Fig. 2: Example of ProofNet autoformalization task

Formalization

Model Typecheck rate BLEU Accuracy
GPT-J 6B 2.3% 5.9 0%
Code-davinci-002 20.2% 25.7 10.8%
proofGPT” 15.5% 8.7 3.0%

Fig 3. ProofNet autoformalizstion results

LILY Lab

Evaluation

A full evaluation suite of quantitative tasks for our model
is a work in progress. However, we report performance
on the ProofNet autoformalization task.

ProofNet autoformalizatoin: ProofNet is a benchmark
consisting parallel natural language and formal
representations in the Lean proof assistant. We evaluate
our models on the task of statement autoformalization:
converting natural language theorem statements to
formal.

To train our models on statement autoformalization, we
use the distilled backtranslation methodology. First, we
use Codex to translate a corpus of 100k Lean formal
statements to NL. Then, we train our models in these
synthetic pairs in the NL->formal direction.

Future Plans

Next semester, we plan to do further work on the project
along the following directions

e Comprehensive evaluation suite, including MMLU,
MATH, and identify _math_theorem datasets.

e Expanding the proof-pile, including by a
Minerva-style web scrape.

e |nvestigating pre-training on synthetic data, such as
solutions to math problems generated by a CAS.

e Training models with more parameters, up to 20B.

