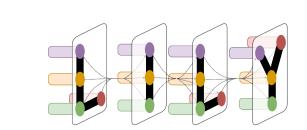


Revisiting the Effectiveness of Automatic N-Gram Rule Generation for Spelling Normalization in Filipino



Lj Flores¹ Dragomir Radev¹
¹LILY Lab, Yale University, New Haven, CT

LILY Lab

Motivation

Many NLP applications (e.g. Google Translate) can't understand or correct slang in Filipino

Our Contribution: We try a heuristic n-gram model, and show that it is (1) much better than augmented deep learning methods, and (2) computationally efficient and interpretable.

Dataset

- •Source: 403 slang words from Meta comments
- •Annotation: 3 Filipino volunteers, 398 examples, 83.8% inter-annotator agreement

Benchmarks

- Language Models: ByT5, Roberta-Tagalog
- •Semi-supervised Techniques:
 Pi-Model (II-Model), Autoencoding
 Augmentation (AE)
- Baselines: Google Translate correction function, DLD Only

N-Gram Model

- •Rule Generation: Slide a window of length k over the word, and record w[i: i+k] → c[j: j+k] as a rule (Fig 1A); uses fact that many words are abbreviated by syllable (~1-2 letters)
- •Candidate Generation: Recursively generate candidates by replacing each substring with all possible rules in the rule dictionary (Fig 1C)
- Ranking Candidates: Using (1) edit distance,
 or (2) Likelihood Score (See Fig 1B & 1C)

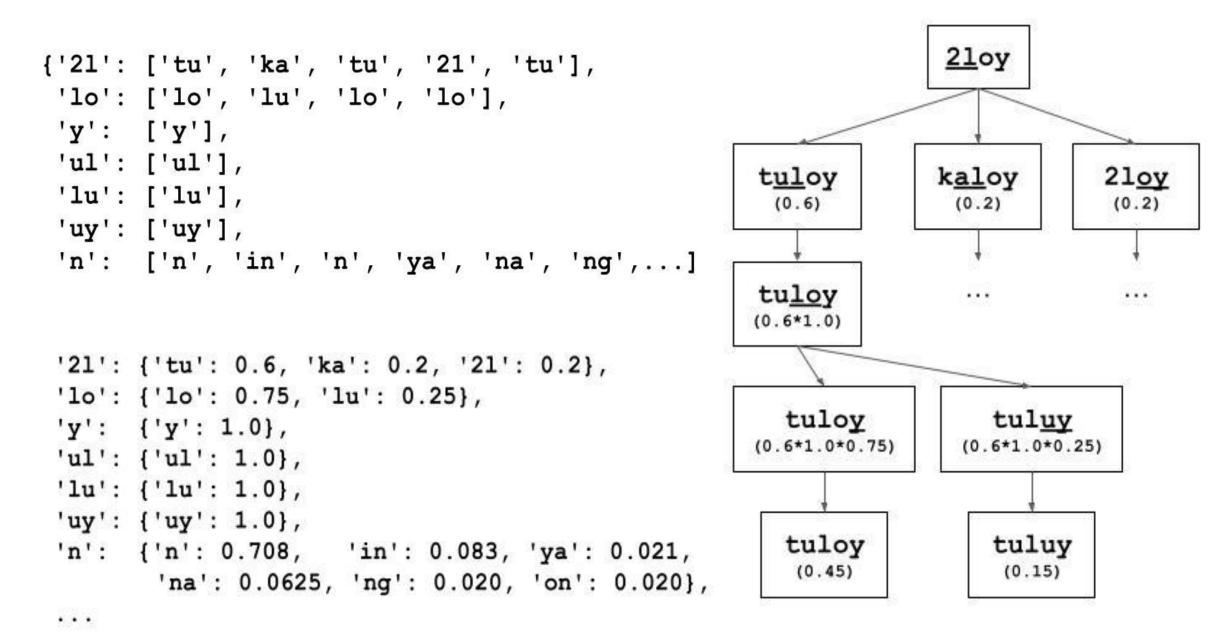


Fig 1. Candidate generation (left) and inference (right) example

Table 1. Performance of N-Gram Model and Benchmarks

Type	Model	Accuracy @ k (%)			DLD		
		k = 1	k = 3	k = 5	Min	Mean	Max
N-Gram Based	N-Grams + DLD V1	0.77	0.82	0.85	0.46	2.91	4.73
	N-Grams + DLD V2	0.67	0.74	0.74	1.03	2.96	4.59
	N-Grams + Likelihood V1	0.17	0.38	0.58	1.22	3.50	5.29
	N-Grams + Likelihood V2	0.47	0.61	0.64	1.30	3.06	4.65
ByT5	Model Only	0.31	0.42	0.49	0.98	2.71	4.38
	Model + Π -Model	0.37	0.58	0.66	0.57	2.06	3.41
	Model + AE	0.04	0.04	0.04	4.28	6.69	10.2
Roberta-Tagalog	Model Only	0.00	0.00	0.00	5.79	15.3	56.7
	$Model + \Pi-Model$	0.00	0.00	0.00	5.69	16.5	69.2
	Model + AE	0.00	0.00	0.00	9.44	42.8	81.7
Baselines	DLD	0.45	0.67	0.72	0.59	2.28	3.32
	Google Translate	0.44	-	-	-	-	-

Results

- N-Grams + DLD V1 has best accuracy; +32% in accuracy @ 1 from the next best model (DLD)
- Transparent model predictions allow for troubleshooting; Errors when either (1) rule is not in the training set, or (2) similarity in spelling of the selected candidate to the actual candidate
- N-Gram model trains in >1s on a CPU, performs inference in ~8.6ms, in contrast LM with hyperparam tuning required ~6 GPU hours