
Introduction + Methods

Large language models (LLMs) in recent years have

exhibited impressive performance that scales well with

model data and size on a variety of NLP tasks including

NL/code generation. Typical LMs are autoregressive,

meaning they only generate text left-to-right. However,

one desirable use case is to improve model-human

collaboration using models which edit text and fill in new

tokens at a specific cursor location. This is a useful step

toward more collaborative use of LLMs by humans.

A recent technique published by OpenAI is FIM (Fill-In-

the-Middle), a simple method to enable language

models to perform text infilling. A “FIM-for-free” property

is reported, in which this FIM capability is gained without

a significant autoregressive perplexity/loss/generation

performance hit, but all models in the paper are private

so the claim is unverifiable. I have replicated the setup

from Bavarian et al. 2022 and released a FIM model,

but FIM comes at a cost to autoregressive performance.

Distributed Training for LLMs

Training large language models requires significant

engineering for proper performance and hardware

utilization, measured in MFU (Model Flop Utilization), in

terms of % of peak achievable performance on a single

GPU (e.g. 312 TFLOPs/gpu for an A100).

Models are trained across many GPU accelerators with

high-speed interconnect and often separated into

separate nodes in a cluster.

For efficient large model and large-batch training, 3D

parallelism is used: data, pipeline, and tensor (model)

parallelism are used to shard model states and batches

across devices efficiently.

In this project, I used and developed on top of

EleutherAI’s GPT-NeoX library, which uses Nvidia

Megatron and Microsoft Deepspeed libraries to support

3D parallel training, and achieved up to 50% MFU in

training 1.3B parameter models.

Results

Conclusion

In the course of this semester, I learned how to scale

large language model pretraining to dozens of nodes

and hundreds of GPU accelerators.

I was able to replicate recent state-of-the-art work on

LLM pretraining and publicly release said replication at

https://huggingface.co/CarperAI/FIM-NeoX-

1.3B/tree/main . I was also able to contribute to the

open-source LLM ecosystem via code implementations

in current popular infrastructure developed by

EleutherAI.

I also had the opportunity to share intermediate results

and discuss findings with other groups attempting

replications who had similar difficulty achieving the

paper’s claims.

Acknowledgements
I would like to thank both my advisors, Drago and Stella. I’d also like to

thank everyone who helped me out on learning infrastructure and

engineering including Shivanshu Purohit and Quentin Anthony, and also

everyone who shared advice and experience on their own

(re)implementations, including Sid Black, Mohammad Bavarian, and

others!

Compute for this project was provided by Stability AI.

Hailey Schoelkopf,1,2 Stella Biderman,1 and Dragomir Radev2

Pretraining Large Language Models to Fill in the Middle

1EleutherAI 2LILY Lab, Department of Computer Science, Yale University, New Haven, CT

Table 1. Main Evaluations

Figure 2. 3D Parallelism Techniques

(https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-

model-training-for-everyone/)

Figure 3. A sample HumanEval AR and infilling example + solution.

Figure 4. Sample Transformer Architecture Diagram

(https://jalammar.github.io/illustrated-transformer/)

LILY Lab

Table 1. Final Test PPL

Figure 1. The FIM Data Augmentation

I implemented the FIM method in GPT-NeoX and

trained over 5 large language models of 1.3B floating

point parameters or larger, controlling for batch size,

data, model size, and other hyperparameters.

I evaluated these models against a number of

classification and code generation tasks as well as

perplexity, and found that the claims in Bavarian et al.

2022 were not replicable by myself or other. This may

be due to subtle differences in data preprocessing, and

follow-up work will be looking into where the divergence

arises, as well as further attempting to perform infilling

with autoregressive models and prompting.

Code is available at https://github.com/EleutherAI/gpt-

neox/tree/FIM-clean/

and

https://github.com/EleutherAI/lm-evaluation-

harness/tree/add_humaneval/ .

Model HumanEval AR

Pass@1

HumanEval AR

Pass@10

HumanEval-infilling

Pass@1

GPT-Neo-1.3B 4.79 7.41 ---

AR-1.3B 4.15 6.71 0.06

FIM-1.3B-rotary 3.66 6.71 3.90

FIM-1.3B-alibi 2.26 4.88 0.06

TokenFIM-1.3B-

rotary

-- -- 1.03

Model Final Test Loss

AR-1.3B 2.007

FIM-1.3B-rotary 2.096

FIM-1.3B-alibi ---

TokenFIM-1.3B-rotary 2.146

https://github.com/EleutherAI/gpt-neox/tree/FIM-clean/
https://github.com/EleutherAI/lm-evaluation-harness/tree/add_humaneval/

	Slide 1

