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estimate the candidate summary quality more
accurately, in concert with the the objective of our
training paradigm.

Materials and Methods

We introduce a training paradigm which requires the
abstractive model to be able to be accurate with
respect to predicting the tokens in the reference
summaries and coordinated with respect to the
candidate summaries. In other words, we give the
abstractive model a dual role: as a generation model, it
generates the output summaries in an autoregressive
way; as an evaluation model, it can be used to score
the quality of candidate summaries by estimating a
probability distribution over candidate outputs. The
generation model is trained using the standard MLE
loss, but to train the evaluation model we introduce a
contrastive loss defined over different candidate
summaries generated by pre-trained abstractive
models following previous work on ranking-based or
contrastive learning. Specifically, we ask the generation
model to assign higher estimated log-likelihood to the
better candidate summaries, by introducing a ranking
loss among different candidate summaries generated
by pretrained abstractive models.

Figure 1: Comparison of MLE loss (L) and the con-
trastive loss (L) in our method. MLE assumes a determin-
istic (one-point) distribution, in which the reference summary
receives all the probability mass. Our method assumes a non-
deterministic distribution in which system-generated sum-
maries also receive probability mass according to their quality.
The contrastive loss encourages the order of model-predicted
probabilities of candidate summaries to be coordinated with
the actual quality metric M by which the summaries will be
evaluated. We assign the abstractive model a dual role — a
single model could be used both as a generation model and a
reference-free evaluation model.
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Figure 3: Reliability graphs on the CNNDM and X Sum datasets.
The accuracy of model’s predictions is plotted against the

model’s confidence on these predictions.
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CoordSum-Ctr maximizes the parameter sharing
between the two stages, and preserves the power
of the Seq2Seq model pre-trained on the same
dataset.

(2) CoordSum-Mul is able to establish the new stare-
of-the-art performance on CNNDM. Notably, the
previous state-of-the-art model, GSum, takes
additional guidance as input and needs a separate
encoder to encode the guidance information, while
CoordSum-Mul uses the same parameterization of
BART.

Conclusion
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