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Introduction

Prerequisite chain learning helps people acquire new knowledge efficiently. While
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people may quickly determine learning paths over concepts in a domain, finding such
paths in other domains can be challenging.

Unsupervised Cross-domain Prerequisite chain learning: transfer knowledge from a
source domain to a target domain.

Efficient Modeling using Graph Convolutional Neural Networks: utilizing domain
adversarial training.

Efficiency: only 1/10 of graph scale and 1/3 of computation time compared with the
previous sota.
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Figure 1: Cross-domain Prerequisite Chain Learning.

Dataset

LectureBankCD (Li et al., 2021): consists of concepts, resources (lecture slides from top
universities), and manually annotated prerequisite relations between concepts, in three
domains: NLP, BIO and CV (computer vision).

Transfer Settings: Domain  Files Pages Tks/pg  Con.  PosRel
NLP=> CV NLP 1717 65028 47 322 1551
NLP= BIO cV 1.041 5832 43 201 871
BIO 148 7,13 135 100 234

Tablel: statistics of the three domains from LectureBankCD.
Files (resource files: lecture slides);Pos. Relations (positive prerequisite relations).

Efficient Variational Graph Autoencoders for Unsupervised Cross-domain Prerequisite Chains
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Domain Adversarial Variational Graph Autoencoders (DAVGAE)
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Graph Construction: all concept nodes from both source and target domain; shared concepts will be
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Figure 2: Model Illustration.

the bridge between the two domains. Pretrained node embeddings X by BERT, Phrase2Vec.
Graph Encoder: two-layer GCN or GAT.
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Decoder: DistMult given a concept pair, given hidden features Z, we learn a R matrix:

A=Z7ZTRZ

VGAE as the main link prediction framework: variational loss and edge reconstruction loss.

Domain Discriminator: a simple neural network (NN), domain classification. Then the final loss

Evgae = ]Eq(Z|X,A) [logp(A | Z)]_
KL[¢(Z | X, A)|[p(Z)],
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NLP—CV NLP—BIO
Method F1 Precision Recall F1 Precision Recall
Unsupervised Baseline Models
CLS + BERT 0.4277 0.5743 0.3419 0.3930 0.7481 0.2727
CLS + P2V 0.4881 0.6106 0.4070 0.2222 0.6000 0.1364
GraphSAGE + P2V 21) 0.5342 0.5085 0.5515 0.5283 0.5177 0.5287
GraphSAGE + BERT (21 0.5102 0.3611 0.5105 0.4736 0.4065 0.5180
VGAE + BERT 2 0.5885 0.5398 0.6488 0.6011 0.6185 0.5909
VGAE + P2V |2 0.6202 0.5368 0.7349 0.6177 0.6521 0.6091
Baseline with Extra Resource Nodes
CD-VGAE + BERT (7] 0.6391 0.5441 0.7884 0.6289 0.6425 0.6364
CD-VGAE + P2V (71 0.6754 0.5468 0.8837 0.6512 0.6667 0.6364
Cross-domain Concept Graph
GAT [18] 0.6064 0.5281 0.7172 0.6257 0.5969 0.6609
GAT + cos 0.6276 0.5276 0.7793 0.6336 0.5644 0.7304
GAT + cos + DAVGAE (ours) 0.6251 0.5613 0.7218 0.6396 0.6557 0.6348
GCN [17] 0.5951 0.5361 0.6713 0.6319 0.6109 0.6609
GCN + cos 0.6318 0.5379 0.7655 0.6174 0.5991 0.6435

*GCN + cos + DAVGAE (ours) 0.6321 0.5661 0.7195 0.6421 0.5932 0.7130

Single-domain Concept Graph

GAT [18] 0.5573 0.4897 0.7609 0.5756 0.5588 0.6348
GAT + cos 0.6287 0.5213 0.8023 0.5587 0.5248 0.6261
GAT + cos + DAVGAE (ours) 0.6356 0.5782 0.7149 0.6545 0.6024 0.7217
GCN [17] 0.5888 0.5169 0.6920 0.5304 0.5218 0.6348
GCN + cos 0.6232 0.5455 0.7287 0.6117 0.5599 0.6783

*GCN + cos + DAVGAE (ours) 0.6771 0.5734 0.8322 0.6738 0.6559 0.6957
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Table 2: Main Results.

Evaluation

Main Results in Table 2:
CLS: binary classifiers; GraphSAGE: topic embeddings
CD-VGAE: Baseline with Extra Resource Nodes. concept and resource graph, strong
performance but graphs are very large.
Our best setting: GCN (encoder) + cosine (edge) + DAVGAE framework
Graph scale and computational time comparison in Table 3:
Significantly reduced the graph scale in both domains, as well as much less
training time, compared to the previous sota.
Case Studies:
The path of a given concept pair (a blue and an orange concept), in the BIO
case, our model predicts a longer path; but in the CV case, our model predicts a much shorter
path with many concepts skipped.

becomes: r r r
— ~wgae + Lgis
Domain Graph Path
CV Ground Truth  object recognition, robotics, artificial intelligence,..., image
processing, feature extraction, autonomous driving
DAVGAE object recognition, video classification, autonomous driving
BIO Ground Truth  DNA, motif discovery

DAVGAE DNA, dynamic programming, RNA secondary structure, en-

ergy minimization, decision trees, sampling, motif discovery

Table 4: Case studies of concept paths.

Conclusion
Experiment Model # Graph node Computational time In this paper, we propose the DAVGAE model
CD-VGAE 3,281 127.5s ) . . .
NLP—CV Ours 22 4715 to soI.ve cro.ss. domain prerequisite chain
NLPBIO CD-VGAE 2287 7168 learning efficiently. It outperforms an
Ours 322 30.2s unsupervised SOTA model trained on a

concept-resource graph, while significantly

Table 3 : Comparison of graph scale and computation time. Computation time
includes 200 epochs of training and one inference run.
Ours:GCN+cos+DAVGAE.

reducing computation space and time.



