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GORC: A large contextual citation graph of academic
papers1

• GORC : the Semantic Scholar Graph of References in Context

• A large contextual citation graph of 81.1M academic publication

Each citation edge in the graph includes the context in which a paper
cites another paper

• Contains parsed full text for 8.1M open access papers

• Sources include PubMed, PubMed Central, arXiv and ACL Anthology

• The dataset also includes word2vec based vector representation of papers
based on their citation contexts.

1Lo et al., “GORC: A large contextual citation graph of academic papers”, 2019
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• Experiments with ACL Anthology abstracts (# 27691) in GORC dataset
using Latent Dirichlet Allocation (LDA)2

2Blei et al., “Latent Dirichlet Allocation”, 2003
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Latent Dirichlet Allocation (LDA)

• Topic: a probability distribution over words

• Document: a probability distribution over topics

Gist...
As the topics are interpretable, and we know how a document
exhibits each topic, we can infer the gist of the document
(Griffiths et al., 2007)a.

aGriffiths et al., “Topics in Semantic Representation”, 2007
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LDA : Macro-analysis of a Document Corpus

A subset of topics on NIPS corpus:
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Annotation of LDA Topics using LectureBank Taxonomy-I

Most probable words of the topic Taxonomy ID
semantic role labeling syntactic predicate frame srl framenet ar-
gument predicate-argument propbank thematic shallow assign-
ment labels frame-semantic proposition verbnet nombank nominal

Semantic Role
Labeling (367)

tagging pos tags tagger shallow unknown tag chunking tokens part
token chunk memory-based tagset sequences transformation-based
predicted chunker pos-tagging part-of-speech brill

Part of Speech
(142)

grammars context-free tree parsing lexicalized derivation formal-
ism probabilistic transduction adjoining bottom-up strings linear
trees extension pcfg stochastic cfg top-down

Context-Free
Grammars
(315)

sense disambiguation wordnet senses wsd lexical ambiguous sam-
ple senseval disambiguate polysemy synsets inventory all-words
knowledge-based coarse-grained semeval glosses ambiguity sense-
tagged

Word Sense
Disambigua-
tion (39)

entity named entities recognition names name ner linking person
mentions proper personal location types nested base nes named-
entity wikipedia recognize newswire gazetteers link geographic f-
measure gazetteer muc persons lists organizations ace

Information
Extraction and
NER (232)
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Annotation of LDA Topics using LectureBank Taxonomy-II

Most probable words of the topic Topic Label
extraction events temporal ordering tense causal complex tem-
peval narrative times date triggers key types aspectual timeline
intervals duration temporally timeml

Temporal reason-
ing

multimodal visual image spatial descriptions instructions video
grounded objects grounding human vision actions world modalities
multi-modal robot captions scene ground situated environment
multimedia

Multimodal

resolution coreference anaphora pronoun resolving zero ellip-
sis mentions coordination chains anaphoric antecedent mention
bridging salience antecedents muc definite reference refer pronom-
inal ontonotes centering null

Co-reference reso-
lution

deep noisy noise bias uncertainty gender real-world auxiliary biases
scenarios sampling suffer inherent tackle poor bert low real incorpo-
rating augment popular leads pre-trained biased suffers fine-tuning

Bias in NLP

evidence arguments stage claim preference selectional argumen-
tation clues determine argumentative restrictions essential mining
determining propositions inferring separate supporting specificity
argue positions

Argumentation
mining
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Bias in NLP

• N19-1061: Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender
Biases in Word Embeddings But do not Remove Them

Word embeddings are widely used in NLP for a vast range of tasks. It was

shown that word embeddings derived from text corpora reflect gender biases in

society...

• D18-1302: Reducing Gender Bias in Abusive Language Detection

Abusive language detection models tend to have a problem of being biased

toward identity words of a certain group of people because of imbalanced

training datasets. For example, “You are a good woman” was considered

“sexist” when trained on an existing dataset....

• P19-1160: Gender-preserving Debiasing for Pre-trained Word Embeddings

Word embeddings learnt from massive text collections have demonstrated

significant levels of discriminative biases such as gender, racial or ethnic

biases..

• N15-1084: Key Female Characters in Film Have More to Talk About Besides
Men: Automating the Bechdel Test

The Bechdel test is a sequence of three questions designed to assess the

presence of women in movies. Many believe that because women are seldom

represented in film as strong leaders and thinkers...
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Approach for Classification of AAN Documents

• Learn a LDA model on NLP related papers of GORC corpus

• Manually tag each LDA topic to one or more entries in the taxonomy

• For each document in AAN corpus, infer distribution over the topics using
the LDA model

• Classify an AAN document based on tags corresponding its most probable
topics

8
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Key Aspects

• Lesser annotation efforts:
#topics is likely to be small as compared to #documents

• Annotation of topics is likely to be sensitive to interpretation of topics and
domain knowledge of annotators
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Key Challenges

• Labelling topics may not be enough, need an iterative process where
annotators annotate a few documents, words, phrases and topics.

• Some topics may be noisy, may not represent an entity from the taxonomy

• LectureBank Taxonomy is hierarchical. How to capture the hierarchy using a
topic model?

• Visualize the corpus to facilitate taxonomy construction and text
classification.
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• Thank you!
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