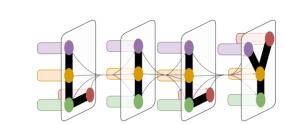


# ESPRIT: Explaining Solutions to Physical ReasonIng Tasks



LILY Lab

## Rui Zhang

Yale University

#### Motivation

- Humans learn to understand and reason about physical laws just by living in this world and doing everyday things.
- Al models, on the other hand, lack this ability and so are unable to generalize to new scenarios by reasoning about abstract physical concepts like gravity, mass, inertia, friction, and collisions
- We propose ESPRIT, a framework for commonsense reasoning about qualitative physics in natural language that generates interpretable descriptions of physical events.

## **PHYRE Benchmark Dataset**

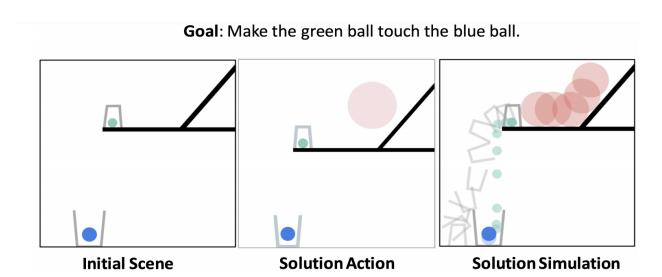
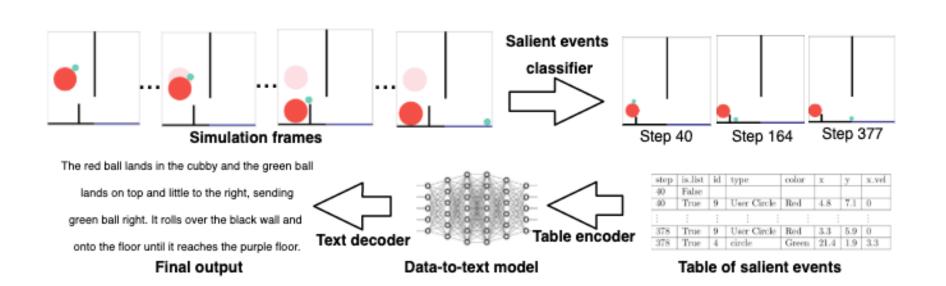


Figure 1: An example of PHYRE benchmark (Bakhtin et al., 2019) consisting of a goal and an initial scene, its solution action, and solution simulation. Each object color corresponds to an object type. Red: the user-added dynamic object; Green and Blue: dynamic goal object; Purple: the static goal object; Gray: the dynamic scene object; Black: the static scene object.

## **ESPRIT Framework**



### **ESPRIT Dataset**

| Templates                             | 25        |
|---------------------------------------|-----------|
| Tasks                                 | 2441      |
| Objects / Task                        | 13.6      |
| Frames / Task                         | 657.9     |
| Collisions / Task                     | 54.2      |
| Annotated Tasks (train/dev/test)      | 625/84/76 |
| Collisions / Annotated Task           | 24.5      |
| Important Collisions / Annotated Task | 3.9       |
| Tokens / Initial State Description    | 38        |
| Tokens / Simulation Description       | 44        |
| Vocabulary Size                       | 867       |
|                                       |           |

Table 1: Statistics for the ESPRIT Dataset.

#### **Data-to-Text Generation**

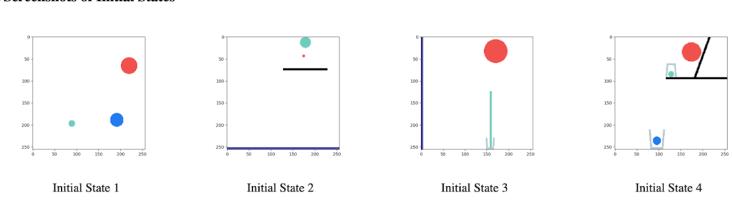
| Input records       | green green_circle_0 OBJ_COLOR  INITIAL_STATE circle green_circle_0 OBJ_TYPE  INITIAL_STATE dynamic green_circle_0 OBJ_STATE  INITIAL_STATE 76 green_circle_0 X  INITIAL_STATE 162 green_circle_0 Y  INITIAL_STATE                               |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gold annotation     | The red and green balls fall. The red ball lands<br>on the ground and the green ball lands on the<br>red ball and rolls to the right over the black<br>vertical bar.                                                                             |
| Generation (AVG)    | The red ball lands in the cubby and the green ball lands on top and a little to the right, sending the green ball right. It rolls over the short black wall of the cage and onto the floor, where it keeps rolling right towards the purple goal |
| Generation (BiLSTM) | The red ball falls and knocks the green ball off of its curved black platform and to the left. It rolls leftwards and continues falling until it lands on the purple floor                                                                       |

Table 6: Example input records, gold annotation and generated simulation description from the AVG and BiLSTM models. This example is taken from 00014:394. We show only a short segment of the actual input records.

## Human Evaluation of Validity and Coverage

#### **Task Example**

#### 1. Screenshots of Initial States



#### 2 Description

The black platform is in the middle, with a distance to the right wall slightly larger than the size of the green ball. The green ball is hovering over the black platform. The red ball is placed left below the green ball. The purple bar is at the bottom.

#### **Your Expected Answers**

The simulation description describes

☐ Initial State 1 ☐ Initial State 2 ☐ Initial State 3 ☐ Initial State 4

## **Experimental Results**

|                                   | Initial state | Simulation |
|-----------------------------------|---------------|------------|
| Random classifier                 | 25.0          | 25.0       |
| GPT (Radford et al., 2018)        | 14.8          | 44.4       |
| AVG (Puduppully et al., 2019b)    | 85.2          | 74.1       |
| BiLSTM (Puduppully et al., 2019b) | 81.5          | 51.9       |
| Human Annotation                  | 66.7          | 63.0       |

Table 4: Human evaluation for *validity* accuracy of initial state and simulation descriptions on test set.

|                                   | Gravity | Friction | Collision |
|-----------------------------------|---------|----------|-----------|
| GPT (Radford et al., 2018)        | 3.9     | 0.0      | 6.6       |
| AVG (Puduppully et al., 2019b)    | 100.0   | 96.1     | 86.8      |
| BiLSTM (Puduppully et al., 2019b) | 100.0   | 93.4     | 84.2      |
| Human Annotation                  | 94.7    | 57.9     | 51.3      |

Table 5: Human evaluation for *coverage* accuracy of physical concepts in simulation descriptions on test set.