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Summarization

* Single Document vs Multi Document
» Abstractive vs Extractive
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Figure 1: The architecture of the self-attention layers used in the T-DMCA model. Every attention
layer takes a sequence of tokens as input and produces a sequence of similar length as the output.
Left: Original self-attention as used in the transformer-decoder. Middle: Memory-compressed
attention which reduce the number of keys/values. Right: Local attention which splits the sequence
into individual smaller sub-sequences. The sub-sequences are then merged together to get the final
output sequence.



Hiersumm(Yang Liu, Mirella Lapata 2019)

* Abstractive
* Trained on Wikisumm dataset
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Figure 1: Pipeline of our multi-document summariza-
tion system. L source paragraphs are first ranked and
the L’-best ones serve as input to an encoder-decoder
model which generates the target summary.
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Figure 2: A global transformer layer. Different col-
ors indicate different heads in multi-head pooling and
inter-paragraph attention.



Reproducing results

v

Model ROUGE-1 ROUGE-2 ROUGE-L

Lead 38.22 16.85 26.89

LexRank 36.12 11.67 22.52

FT (600 tokens, no ranking) 35.46 20.26 30.65

FT (600 tokens) 40.46 25.26 34.65

FT (800 tokens) 40.56 25.35 T B K O 35T e R e 1 A T e YR et 7 S SR

FT (1,200 tokens) 39.55 24.63 33.99 n -

T-DMCA (3000 tokens) i 25 60 24,90 1 ROUGE-1 Average_R: 0.37926 (95%-conf.int. 0.37708 - 0.38151)
HT (1,600 tokens) 40.82 25.99 35.08 1 ROUGE-1 Average_P: 0.61810 (95%-conf.int. 0.61556 - 0.62057)
HT (1,600 tokens) + Similarity Graph 40.80 25.95 35.08 1ROUGE-1 Average_F: 0.41340 (95%-conf.int. 0.41144 - 0.41534)
HT (1,600 tokens) + Discourse Graph 40.81 25.95 3524 e N T S L i AT

HT (train on 1,600 tokens/test on 3000 tokens) 41.53 26.52 35.76

1 ROUGE-2 Average_R: 0.23940 (95%-conf.int. 0.23721 - 0.24160)

Table 2: Test set results on the WikiSum dataset using ROUGE F3. 1 ROUGE-2 Average_P: 0.39258 (95%-conf.int. 0.38964 - 0.39558)

1 ROUGE-2 Average_F: 0.26367 (95%-conf.int. 0.26151 - 0.26569)
1 ROUGE-L Average_R: 0.32521 (95%-conf.int. 0.32304 - 0.32741)

1 ROUGE-L Average_P: 0.52971 (95%-conf.int. 0.52702 - 0.53237)

1 ROUGE-L Average_F: 0.35556 (95%-conf.int. 0.35353 - 0.35759)



Our modifications

* Product Key Memory layer (Guillaume Lample , Alexandre
Sablayrolles, Marc’Aurelio Ranzato, Ludovic Denoyer , Herve Je gou
2019)

* Extractive Hiersumm — take the pretrained encoder part of Hiersumm
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Figure 2: Illustration of the product keys. We define two discrete subsets of keys (sub-key set 1
and sub-key set 2). They induce a much larger set of keys, which are never made explicit (product
Figure 1: Overview of a key-value memory layer: The input x is processed thro  keys). Given a query. we split it into two sub-queries (¢, and ¢2). Selecting the k closest keys
network that produces a query vector ¢, which is compared to all the keys. The output (k= 2 in the figure) in each subset implicitly selects k x k keys. The k keys maximizing the inner
weighted sum over the memories associated with the selected keys. For a large nun  product with the query are guaranteed to belong to this subset, on which the search can be done
|K|. the key selection procedure becomes too expensive in practice. Our product ke ~ efficiently.

exact and makes this search process very fast.
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Figure 3: Left: A typical transformer block is composed by a self-attention layer followed by
an FFN layer (a two layer network). Right: In our system, we replace the FFN layer with a
product-key memory layer, which is analogous to a sparse FFN layer with a very large hidden
state. In practice, we only replace the FFN layer in N layers, where typically N € {0,1,2}.



Results

 ROUGE-1 Average_R: 0.08686 (95%-conf.int. 0.08639 - 0.08732)
1 ROUGE-1 Average_P: 0.29698 (95%-conf.int. 0.29538 - 0.29857)
1 ROUGE-1 Average_F: 0.12360 (95%-conf.int. 0.12303 - 0.12416)

1 ROUGE-2 Average_R: 0.01086 (95%-conf.int. 0.01073 - 0.01101)

1 ROUGE-2 Average_P: 0.04469 (95%-conf.int. 0.04419 - 0.04522)
1 ROUGE-2 Average_F: 0.01602 (95%-conf.int. 0.01583 - 0.01620)
1 ROUGE-L Average_R: 0.08005 (95%-conf.int. 0.07965 - 0.08048)
1 ROUGE-L Average_P: 0.27174 (95%-conf.int. 0.27033 - 0.27307)
1 ROUGE-L Average_F: 0.11346 (95%-conf.int. 0.11296 - 0.11395)

[2019-11-08 19:08:48,814 INFO] Rouges at step 100000
>> ROUGE-F(1/2/3/1): 12.36/1.60/11.35
ROUGE-R(1/2/3/1): 8.69/1.09/8.00



Extractive Hiersumm

* Modification code Reference: Text Summarization with Pretrained
Encoders(Yang Liu and Mirella Lapata, EMNLP2019)
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Figure 1: The overview architecture of the BERTSUM model.



Conclusion and Future work

* PKIM
* Reduce memory usage for extractive hiersumm



