ESPRIT: Explaining
Solutions to Physical

Reasonlng Tasks

Aadit Vyas
LILY Workshop Fall 2019
Dec 13, 2019

CPSC 490 Project Proposal

e Explainable Al is an important field
e PHYRE could present an interesting training ground

=1

Figure 1: Three examples of PHYRE tasks (left) and one example solution (right). Black objects are
static; objects with any other color are dynamic and subject to gravity. The tasks describe a terminal
goal state that can be achieved by placing an additional object(s) in the word and mnning the
simulator. The task in the left-most pane requires the placement of two balls to be solved, whereas
the others can be solved with one ball. The right-most pane illustrates a solution (red ball) and the

solition dynamics.

ESPRIT Final Project

e PHYRE dataset generation

’ ’ . Salient Collision Classification ’ | ‘
' _—

o . A _ . . S a8 .
- . ¢ 51(‘[‘ 40 SK‘F 164 -\?tp 317
Simulation Frames

Table Decoder Table Encoder

o000

o
o Table of Salient Events

Final Output
Data-To-Text Model

Figure 2: The ESPRIT framework for identifying salient physical events and explaining solutions

using natural language generation.

Building the ESPRIT Dataset

e Intercepting the PHYRE simulator

e Extracting information from Thrift
objects

e Storing information in objects

e Windowing steps

Templates 25
Tasks 2441
Objects / Task 13.6
Frames / Task 657.9

Collisions / Task 54.2

Annotated Tasks (train/dev/test) 625/84/76
Collisions / Annotated Task 24.5

Important Collisions / Annotated Task 3.9

Tokens / Initial State Description 38

Tokens / Simulation Description 4
Vocabulary Size 867

Table 1: Statistics for the ESPRIT Dataset.

Magic of JSON

import json
reads in a file with a json object in it and prints it out
def read_json_file(fp):
with open(fp) as f:
lines = f.read()
simulations_json = json.loads(lines)
return simulations_json

import csv
def initial_csv_with_sim_col(initial_json):
create columns for the csv
task_id = initial_json[@] ["task_id"]
action = initial_json[0] ["action"]
object_keys = list(initial_json[@] ["objects"][0].keys())
key_names = ["task_id"] + ["action"] + object_keys

create the rows in the csv

new = []
for objects in initial_json[@] ["objects"]:
temp = {}

temp ["task_id"] = task_id
temp["action"] = action
for key in object_keys:

temp [key] = objects[key]
new.append(temp)

Actually write to the csv

f = open("initial_out.csv", "w")

output = csv.writer(f)

output.writerow(key_names)

for row in new:
output.writerow(row.values())

f.close()

takes the json of a single task, action simulation

def get_collisions(initial_scene_objects, simulation_json, window):
collision_steps = [] # list of steps that have a begin/ end collision
steps_of_interest = set() # set of all step frame numbers we care about
step_objects = [] # list of all step objects we care about

loop through all the steps
all_steps = simulation_json['steps']
for step in all_steps:
if 'collisions' in step:
collision_steps.append(step['step'])

at this point collision_steps has all the desired frames, now we need to add the window to all
for collision_step in collision_steps:
for shift in range(-window, window + 1):
curr_step = collision_step + shift
if curr_step not in steps_of_interest:
steps_of_interest.add(collision_step + shift)
step_objects.append(all_steps[curr_stepl)

return step_objects

Creating Objects

returns a list of objects in the scene
def create_list_of_objects(thrift_scene):
print(thrift_scene)
bodies = thrift_scene.bodies
object_list = []
count = @ # TODO: until IDs decided, this is a temporary item ID

for body in bodies:
print(body)

JAR
if len(body.shapes) == 3:
object_list.append(Jar(body, count))

CIRCLE
elif body.shapes[@].circle:
object_list.append(Circle(body, count))

BAR
else:
object_list.append(Bar(body, count))

count += 1

return object_list

class output_object:

def __init__ (self, type, body, x, y, object_id):
self._type = type # type of object (bar, circle, jar)
self._state = BODY_TYPE[body.bodyTypel # dynamic or static
self._color = COLOR_DICT[body.color]
self. X = X
self. y =y
self._object_id = object_id # a unique identifier for this object

def get_short_description(self):
return f"{self._state} {self._color} {self._type}"

def print_description(self):
raise NotImplementedError

class Jar (output_object):
def __init_ (self, body, object_id):
X, y = body.position.x, body.position.y # this is the center of the base of the jar
self._angle = body.angle # note this is in radians
self._width = self.calculate_base_width(body) # assumption: that each bar has the same width

self.calculate_base_length(body)
self.calculate_side_length(body)

self._baselen
self._sidelen

super().__init__("jar", body, x, y, object_id)

calculate the base length

def calculate_base_length(self, body):
shapes = body.shapes
base = shapes[0]
top_right = base.polygon.vertices[0].x
return abs(top_right) * 2

calculate the width of a bar

def calculate_base_width(self, body):
shapes = body.shapes
base = shapes[0]
top_right = base.polygon.vertices|[0].y
return abs(top_right) * 2

class Circle (output_object):
def __init_ (self, body, object_id):
self._radius = body.shapes[@].circle.radius

super().__init_ ("circle", body, body.position.x, body.position.y, object_id)

def print_description(self):
print(f"ID: {self._object_id}| {self._color} {self._type} at ({self._x:.2f}, {self._y:.2f}) with a radius of {self._radius:.2f}")

Representing the initial state as a structured table

“object_id | type state color | x y angle | length | width | base_length | radius |
0 | boundary | Static | Black | 1280 | -25 | 0.0 | 256.0 | 5.0

1 ‘ boundary Static [Black | 25 | 128.0 | 0.0 5.0 256.0

2 | boundary Static | Black | 128.0 | 258.5 | 0.0 256.0 | 5.0 y
3 | boundary Static Black | 258.5 | 128.0 | 0.0 5.0 256.0 |
4 | circle Dynamic | Green | 32.9 | 83.2 6.5 |
5 [bwr [Sutic | Black [394 | 123 |15 | 246 |51 J
6 | bar Static Black | 130.5 | 166.3 | 1.5 179.2 | 5.1 |
7 | bar Static Black | 64.0 |25 0.0 128.0 | 5.1 |
8 | bar Static ' Purple | 192.0 [25 |00 128.0 | 5.1]
9 | User Circle | Dynamic | Red |29 |57 | 20 |

Table 1: Representing the initial state as a structured table. Example for task 00014:496.

150

250

Future Work

e Creating an agent that trains on the data-to-text output and plays PHYRE
e Expand the ESPRIT dataset

