
Introduction

Word embedding is one the most common techniques 

for feature learning in Natural Language Processing 

(NLP), allowing us to retrieve functional and semantic 

similarities between words and concepts from their 

vector representations. While most state-of-the-art 

methods for word embedding perform really well on 

tasks that require similarity analysis, none of them are 

optimized for dealing with hierarchical structures or 

deriving hierarchical relations between entities. Nickel 

and Kiela (2017) claim that these state-of–the-art 

methods lack performance in hierarchical sets because 

they use Euclidean vector spaces, which do not account

for hierarchy. They propose instead Poincaré

embeddings as a method optimized for data with latent 

hierarchies, as it embeds word and concepts into a 

hyperbolic space, which can be thought of as a 

continuous version of trees. Dhingra et al. (2018) 

describe a method to obtain non-parametric 

unsupervised Poincaré word embeddings from natural-

language text corpora, using co-occurrences of pairs of 

concepts within the corpus. In this project, we combine 

these two methods in order to derive prerequisite 

relations between concepts in the domain of Natural 

Language Processing, drawing from a corpus of 7,472 

text files collected from online courses, tutorials and 

academic publications.

Materials

In this project, we use two Datasets:

• LectureBank - manually-collected dataset of 1352 

lecture slide presentations from 60 courses covering 

5 different domains: Natural Language Processing, 

Machine Learning, Artificial Intelligence, Deep 

Learning and Information Retrieval.

• TutorialBank - manually-collected dataset of over

6000 resources, ranging from HTML pages to lecture 

slides and textbooks, mainly in the domain of Natural 

Language Processing.

Along with these two datasets, we use a list of 208 

annotated topics and the prerequisite relations between 

them, both part of TutorialBank. Some minor 

modifications were made to this list of topics in order to 

account for common abbreviations and different ways to 

write the concepts.

Results

There is strong empirical evidence that the Poincaré word 

embedding model alone is able to derive hierarchical 

relations between concepts completely unsupervised, 

which is something that no other model that uses an 

Euclidean vector space can. There are a few trends in the 

results, however, that we should point out. First, increasing 

the dimensionality increases the Mean Average Precision, 

as the prerequisite closure is a highly intricate graph and 

trying to represent all edges in a two-dimensional Poincaré

disk leads to many false positives (prerequisite pairs that 

do not exist even though one concept has lower norm and 

is close to the other concept). A second trend is that a lower 

dimensionality results in higher recall, which is reasonable 

considering it has a much lower precision. The third trend is 

that calculating the number of co-occurrences in the entire 

document leads to a much higher Mean Average Precision 

and Recall than calculating co-occurrences within a fixed 

window. We can explain this trend considering the nature of 

the corpora, as two topics would hardly be mentioned in the 

same lecture, tutorial or paper if they were not correlated. 

Also, using a fixed window of 10 words leads to 3600 co-

occurrence pairs, most of which with weight 1. Using the 

entire documents leads to 26000 co-occurrence pairs, with 

several distinct weights. For comparison, the annotated 

closure has 900 pairs.

Conclusion

Poincaré Embeddings provide a really interesting 

approach to prerequisite chain learning and to 

unsupervised learning in hierarchical datasets. The fact 

that the model achieves much better results when 

considering co-occurrences in the document as a whole 

instead of within a fixed window shows that there a strong 

synergy between using Poincaré Embeddings and 

clustering documents based on their topics, and that we 

can further improve the task of generating prerequisite 

chains by combining the two approaches
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Approach

The first step in our approach is to construct co-

occurrence weighted graphs 𝐺 = {(𝑤, 𝑣, 𝑓𝑐)} from all 

concept pairs (𝑤, 𝑣) appearing within a fixed window of 

each other in the corpus, where 𝑓 represents the 

number of occurrences and 𝑐 < 1 is a downsampling

constant. We use windows of size 10, 20 and 50 and 

also the number of co-occurrences in the entire 

document. Then, we embed these graphs into a 

Poincare n-ball using the algorithm created by Nickel 

and Kiela (2017). We have used n-balls of dimension 2, 

3, 5, 10, 50 and 100.

Evaluation Method

We use two evaluation methods to test our results. The 

first one is trying to reconstruct the annotated 

prerequisites from the trained embeddings and reporting 

the Mean Average Precision (MAP) and the Mean Rank. 

The second, which would be equivalent to calculating 

the recall, is to rank all topics by increasing norm (the 

closest the norm of a topic is to zero, the higher it is in 

the hierarchy) and to verify how many annotated 

prerequisite relations from the annotated set are 

satisfied. As a form of comparison, we get a MAP of 

0.82 and a recall of 0.97 when training the Poincaré

Model with the annotated graph.

Figure 1. Poincaré embeddings after 15, 50 and 100 epochs, respectively, for the graph of annotated prerequisites. Concepts lower in the 

hierarchy are closer to the border, while concepts higher in the hierarchy are closer to the center.

𝑑 𝒖, 𝒗 = cosh−1 1 + 2
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Equation 1. Distance between two vectors in a n-dimensional Poincaré unit ball

2 3 5 10 50 100

MAP 0.096 0.113 0.112 0.118 0.119 0.116

Recall 0.561 0.495 0.509 0.516 0.521 0.520

MAP 0.095 0.124 0.127 0.130 0.132 0.131

Recall 0.569 0.548 0.543 0.550 0.549 0.550

MAP 0.091 0.121 0.131 0.132 0.131 0.131

Recall 0.551 0.544 0.541 0.541 0.541 0.538

MAP 0.083 0.139 0.186 0.190 0.191 0.191

Recall 0.629 0.620 0.620 0.617 0.614 0.615
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Table 1. Results using 𝑐 = 0.5 and combining LectureBank and TutorialBank
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