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ABSTRACT

Multi-document discoure analysis has emerged with the po-
tential of improving various information retrieval applica-
tions. Based on the newly proposed Cross-document Struc-
ture Theory (CST), this paper describes an empirical study
that uses boosting to classify CST relationships between sen-
tence pairs extracted from topically related documents. We
show that the binary classifier for determining existence of
structural relationships significantly outperforms the base-
line. We also achieve promising results on the multi-class
case in which the full taxonomy of relationships are consid-
ered.
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1. INTRODUCTION

Computational models for natural language discourse struc-
ture have been widely studied since the 1970s. They have
gained increasing attention with the proliferation of web-
based information resources and related applications such
as text summarization and question answering. Recently,
the study of multi-document discourse has emerged, which
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is different from traditional discourse analysis in that multi-
ple related documents may be written in different styles and
use different vocabulary.

Inspired by Rhetorical Structure Theory (RST) [11], the
notion of Cross-document Structure Theory (CST) was pro-
posed by [16]. The central idea is to posit a set of rhetorical
relationships that hold between sentences cross topically-
related documents. It has been shown that the availability of
such information can help multi-document text summariza-
tion [21]. It is also conceivable that other IR-related applica-
tions, such as semantic entity and relation extraction (where
semantic relations may instantiate cross document bound-
aries), and non-factoid question answering (where answer
generation may demand “fusing” information from multiple
documents), can potentially benefit from multi-document
discourse structure.

However, as far as we are aware of, no work has been
done to show whether the relationships posited in the CST
framework can be automatically identified from free text. In
this paper, we explore the possibility of classifying CST rela-
tionships by using a machine learning approach, specifically
Boosting [20].

2. RELATED WORK

A similar effort has been recently attempted in the arena
of RST. Marcu [12] proposed a first-order formalization of
the high-level rhetorical structure of text, and provided a
theoretical analysis and an empirical comparison of four al-
gorithms for automatic derivation of text structures. A set of
empirically motivated algorithms were designed for rhetori-
cal parsing, i.e., determining the elementary textual units of
a text, hypothesizing rhetorical relations that hold among
these units, and eventually deriving the discourse structure
of the text. Marcu’s approach is basically knowledge-based.
He relied on “cue phrases” in implementing algorithms to
discover the valid RST trees for a single document. This
approach is reasonable because of the conventions of writ-
ing and the valid assumption that authors tend to write
documents using certain rhetorical techniques. However, in
the case of multiple documents and cross-document relation-
ships (links), we cannot expect to encounter a reliable analog
to the cue phrase. This is because separate documents, even
when they are related to a common topic, are generally not
written with an overarching structure in mind. Particularly
in the case of news, we are most often looking at articles
which are written by different authors working from par-



tially overlapping information as it becomes available. So,
except in cases of explicit citation or repetition, we cannot
expect to find a static phrase in one document which reliably
indicates a particular relationship to some phrase in another
document. Therefore, it may pay off to look for deeper-level
cues and to pursue statistical approaches instead.

More recently, [13] presented a machine learning approach
to classifying RST relationships. Only lexical features are
used in the naive Bayes classifier, and part-of-speech infor-
mation is only used for feature selection for comparison pur-
poses. Worth noting is that the authors take advantage of
the available linguistic knowledge and exploit various cues
in obtaining training data. Doing so is, again, much harder
in the cross-document context.

In SimFinder [5], the authors introduced a machine-learned
similarity measure at the paragraph level, but they look at a
slightly different problem, i.e., whether two paragraphs con-
tain “common information”. This doesn’t directly fit into
the CST framework and it is only a binary classification
problem. What is inspiring is that they use various syntac-
tic and semantic features in their logistic regression model.

3. PROBLEM DEFINITION

3.1 Cross-document Structure Theory

Cross-document Structure Theory (CST) is a functional
theory for multi-document discourse structure. It is used
to describe cross-document semantic connections, such as
“elaboration”, “contradiction”, “attribution”, and “histori-
cal background”, among text units of related documents .
CST is related to RST but assumes no deliberateness of writ-
ing and no underlying tree representation. While the graph-
like representation look like “semantic hyperlinks” [19], the
relationships are all linguistically motivated. We focus on
sentence-level CST relationships in this study.

The full taxonomy of CST relationships, refined from those
presented in [16] and [21], can be found in Figure 1. Notice
that some CST relationships, such as identity, are symmet-
ric (multinuclear, in RST terms), while some other ones,
such as subsumption, do have directionality, i.e., they have
nucleus and satellite. It is also worth noting that all CST
relationships are domain-independent.

3.2 Formulation of the classification problem

As a first approximation, we cast the CST relationship
identification problem in a standard classification frame-

work. Conceptually, given an unordered sentence pair P(S1, S2),

where sentences S1 and S» are from two different but top-
ically related documents, we are interested in determining
the type(s) of cross-document relationships between them.

In this paper, we investigate the following two scenarios:

e The binary classification scenario: here we are inter-
ested in the existence of cross-document relationships
regardless of type. If the two sentences are related in
any types, the pair is assigned a label “1”, otherwise
a “07’ .

e The full classification scenario: in this case we do care
about the type(s) of cross-document relationships be-
tween the sentence pair. Moreover, it is possible for a
single pair to have multiple labels (see section 4 and 5.2
for more detail).

For the full classification scenario, the class labels are
adapted from the CST taxonomy presented in Figure 1.
Therefore, there are 19 possible labels in total (18 CST types
plus a special type “no relationship”).

4. EXPERIMENTAL SETUP AND DATA COL-

LECTION

Due to the lack of systematic linguistic knowledge for the
problem that we are addressing, we could not obtain training
data as in [13]. Instead, we had to actively collect data and
have human judges annotate the CST relationships.

As our first attempt, we collected six clusters of related
news articles from various sources. The clusters were chosen
to be diverse with respect to their topics, the time span
across the documents, the cluster size, and the news agencies
from which the articles were collected. Table 1 shows the
characteristics of the clusters. The cluster names reflect the
source from which the cluster of documents was obtained.

Three of the clusters were collected from secondary sources
while three were collected by the authors. The DUC cluster
was obtained from the 2001 Document Understanding Con-
ference (DUC) training data, the HKNews cluster was taken
from the Hong Kong News Corpus (LDC2000T46), and the
Novelty cluster was a cluster from this year’s TREC Novelty
track test data. The Milan9 and Gulfairll clusters were col-
lected by the authors live from the Web from several news
sites: USA Today, MSNBC, CNN, FOX News, the BBC, the
Washington Post and ABC News. Finally, the NIE cluster
was collected automatically using NewsInEssence, a publicly
available research prototype *.

The Milan9 cluster was used strictly for corpus develop-
ment and judge training purposes. It was annotated for
CST relationships by two authors in developing the markup
scheme and the guidelines to be used by the independent
judges to be hired. The five clusters that were annotated by
the judges were DUC, Gulfairll, HKNews, NIE, and Nov-
elty.

Human annotation is not only expensive, and the results
are not always ideal. Human judges often do not agree,
due to the inherently ambiguous nature of natural language.
The large search space makes the situation even worse. In a
ten-document cluster with 20 sentences on average in each
document, for example, a human judge will have to examine
roughly 18,000 sentence pairs if he or she wants to exhaust
all possibilities. This is an incredibly tedious job in any
sense, and because of that, it is very difficult for multiple
judges to reach reasonable agreement on the annotation.

One possible way to alleviate the problem is to exploit
the observation that CST relationships are unlikely to exist
between sentences that are lezically very dissimilar to each
other. In other words, certain similarity measures might
behave as a useful proxy for finding CST-related sentence
pairs. We experimented with a few lexical-level similarity
metrics, including Cosine [18], word overlap, longest com-
mon subsequence and BLEU [14], and then measured their
correlation with CST-relatedness. Using the very carefully
annotated MI9 as “training” data, we found that word over-
lap rate 0.12 is the “best” cutoff criterion for selecting sen-
tence pairs, in the sense that it helps minimize selected num-
ber of sentence pairs without losing too many CST-related
pairs (the recall is 87.5%). We then applied this measure

Yhttp://www.newsinessence.com



ID | Relationship | Description

Text span 1 (S1
P

Text span 2 (S2)

1 Identity The same text appears in more than | Tony Blair was elected for a second | Tony Blair was elected for a second
one location term today. term today.
2 Equivalence Two text spans have the same infor- | Derek Bell is experiencing a resurgence | Derek Bell is having a ”comeback
(Paraphrase) mation content in his career. year.”
3 Translation Same information content in different | Shouts of “Viva la revolucion!” echoed | The rebels could be heard showiin
languages through the night. “TLong live the revolution”.
4 Subsumption S1 contains all information in S2, plus | With 3 wins this year, Green Bay has | Green Bay has 3 wins this year.
additional information not in S2 the best record in the NFL.
5 Contradiction Conflicting information There were 122 people on the downed | 126 people were aboard the plane.
plane.
6 Historical S1 gives historical context to informa- | This was the fourth time a member of | The Duke of Windsor was divorced
Background tion in S2 the Royal Family has gotten divorced. | from the Duchess of Windsor yester-
day.
7 Citation S1 explicitly cites document S2 An earlier article quoted Prince Albert | Prince Albert then went on to say, “I
as saying “I never gamble.” never gamble.”
8 Modality S1 presents a qualified version of the | Sean “Puffy” Combs is reported to own | Puffy owns four multimillion dollar
information in S2, e.g., using “al- | several multimillion dollar estates. homes in the New York area.
legedly”
9 Attribution S1 presents an attributed version of in- | According to a top Bush advisor, the | The President was alarmed to hear of
formation in S2, e.g. using “According | President was alarmed at the news. his daughter’s low grades.
to CNN,”
10 Summary S1 summarizes S2. The Mets won the Title in seven | After a grueling first six gamse the
games. Mets came from behind tonight to take
the Title.
11 Follow-up S1 presents additional information | 102 casualties have been reported in | So far, no casualties from the quake
which has happened since S2 the earthquake region. have been confirmed.
12 Indirect speech | S1 indirectly quotes something which | Mr. Cuban then gave the crowd his | “I’ll personally guarantee free Chalu-
was directly quoted in S2 personal guarantee of free Chalupas. pas,” Mr. Cuban announced to the
crowd.
13 Elaboration S1 elaborates or provides details of | 50% of students are under 25; 20% are | Most students at the University are un-
(Refinement) some information given more generally | between 26 and 30; the rest are over | der 30.
in S2 30.
14 Fulfillment S1 asserts the occurrence of an event | After traveling to Austria Thursday, | Mr. Green will go to Austria Thurs-
predicted in S2 Mr. Green returned home to New | day.
York.
15 Description S1 describes an entity mentioned in S2 | Greenfield, a retired general and father | Mr. Greenfield appeared in court yes-
of two, has declined to comment. terday.
16 Reader Profile S1 and S2 provide similar information | The Durian, a fruit used in Asian cui- | The dish is usually made with Durian.
written for a different audience. sine, has a strong smell.
17 Change of per- | The same entity presents a differing | Giuliani criticized the Officer’s Union | Giuliani praised the Officer’s Union,
spective opinion or presents a fact in a differ- | as “too demanding” in contract talks. | which provides legal aid and advice to
ent light. members.
18 Overlap (par- | S1 provides facts X and Y while S2 pro- | The plane crashed into the 25th floor of | A small tourist plane crashed into the
tial equiva- | vides facts X and Z; X, Y, and Z should | the Pirelli building in downtown Milan. | tallest building in Milan.
lence) all be non-trivial.

Figure 1: CST relationship

s and examples




[ Cluster | Topic | Articles | Time span | Ave. length (sent.) | No. sources | Clustering method ]
Milan9 Milan plane crash 9 2 days 30 5 manual
DUC John Lennon biography 4 4 years 46 4 manual
Gulfairll Bahrain plane crash 11 4 days 27 6 manual
HKNews Air and water quality 8 2.5 years 32 1 manual
NIE N. Korea nuclear weapons 5 18 days 14 3 automatic
Novelty Cancer and power lines 4 4 years 21 2 manual

Table 1: Characteristics of the document clusters

on the other five clusters and selected, from huge number
of possible sentence pairs, a total of 4931 potentially “inter-
esting” ones for human judges to annotate. This way the
judges’ workload is significantly reduced. Eight judges were
hired; each judge annotated at least one cluster; each cluster
was annotated by two judges. The judges were allowed to
assign multiple CST types to a single sentence pair, given
the inherently ambiguous nature of the problem and the fact
that the CST types are not mutually exclusive.

Notice that the lexical similarity measure is merely a heuris-
tic to filter out a large number of uninteresting sentence
pairs. It is not sufficient to be a CST relationship identi-
fication algorithm by itself, because it can only work as a
binary classifier, and its precision is very low (roughly 25%
on the collected data).

5. CLASSIFICATION USING BOOSTING

The main goal of our study was to identify methods that
can identify the presence of CST relationships in sentence
pairs.

5.1 Algorithm and Features

Among a number of state-of-the-art classification algo-
rithms, we choose to use boosting [20] for our task. The ba-
sic idea of this algorithm is to find a “strong” hypothesis by
combining many “weak” or “base” hypotheses. Moreover,
BoosTexter [20], the off-the-shelf implementation of boost-
ing, explicitly supports multi-label classification, which is
very convenient for the multi-label full classification scenario
in our problem.

As discussed in section 2, lexical features by themselves
are probably not sufficient for identifying CST relationships
between sentences. Therefore, we considered various fea-
tures at three linguistic levels, details of which follow. The
general idea is to quantify the similarity or distance between
two sentences at each level.

For most sentence pairs, the procedures for computing all
features, such as tokenization, part-of-speech (POS) extrac-
tion, and head guessing, can directly or indirectly take ad-
vantage of the parse trees produced by the Charniak parser [1].
For the very few sentences on which the parser fails, we used
heuristic backoff procedures.

5.1.1 Lexical features

At this level, we are only interested in the surface tokens.
No stemming or stop-word deletion is done. Three features
are of interest:

e Number of tokens in sentence 1
e Number of tokens in sentence 2

e Number of tokens in common

5.1.2 Syntactic-level features

At the syntactic level, we capture the overlap between two
sentences with regard to 6 parts of speech: regular noun,
proper noun, verb, adjective, adverb, and (cardinal) num-
ber, which are considered to convey relatively more substan-
tial information than others.

For each z in the 6 POS types above, we compute the
following counts:

o Number of tokens having POS z in sentence 1
e Number of tokens having POS z in sentence 2
e Number of common tokens having POS z
A total of 18 features are therefore used at this level.

5.1.3 Semantic-level features

Obviously, a full comparison of what two sentences “mean’
at the semantic level is still an Al-complete problem, but
here we propose a heuristic approximation. The idea is
to find the most prominent concepts discussed in each sen-
tence pair (by taking advantage of the syntactic structure)
and compute their lexical semantic distance by using Word-
net [3]. More specifically, this is done through the following
steps:
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1. Find the top level NP (noun phrase) and VP (verb
phrase) in sentence 1 and sentence 2.

2. Find the head tokens of both NP and VP by using the
head rules in [10] and [2].

3. Align the heads correspondingly (i.e., NP vs. NP, VP
vs. VP).

4. For each head pair, compute the semantic distance de-
scribed in [8], [7], [17], [9], and [6], by using the seman-
tic distance toolkit [15].

For each sentence pair, we have two pairs of heads (heads
of NPs and heads of VPs). For each head pair, we compute
the five semantic distance measures above. Therefore we
have a total of 10 features at the semantic level.

For example, given the following (very simple) sentence
pair:

(S(NP(NNS Birds))(VP(VBP fly)))
(S(NP(NNS Humans)) (VP(VBP think)))

Five distance measures will be computed for word pairs
{bird, human} and {fly, think} respectively. In this case,
the heads of top-level NP and VP are trivial to find, but in
most cases we have to resort to the fairly sophisticated rules
in step 2 above.



5.2 Data treatment

As mentioned in section 4, each document cluster is an-
notated by two judges, and the judges are allowed to assign
multiple labels to a single pair.

The judges don’t always agree. They may either disagree
on whether two sentences are CST-related at all or disagree
on the types of CST relationships between them. Instead
of asking the judges to resolve the disagreements, as was
done in [5], we decided to only include the data points on
which the two judges at least agree on the existence of CST
relationships (regardless of type). 3942 out of 4931 sentence
pairs satisfy this condition (kappa = 0.53). This is an im-
portant decision based on our understanding of the underly-
ing linguistic phenomenon, instead of technical inability of
dealing with noisy data. Since the ability to determine the
existence of any CST relationships is important for many
potential applications, we want the model to be as clean as
possible. On the other hand, once the CST-relatedness is
known, it is reasonable for multiple rhetorical relationships
to hold between two sentences.

Given the constraint above, labels can be assigned to data
points in the binary and full classification scenarios respec-
tively:

e In the binary classification case, a label “1” is assigned
to a pair if it is unanimously believed to be CST-
related, and a label of “0” if it is unanimously believed
to be not related. (These are the only two cases pos-
sible due to the constraint above.)

e In the full classification case, each sentence pair is as-
signed the union of the labels given by the two judges if
they agree that the two sentences are CST-related, or
a label “0” if they agree that the two sentences are not
related. (Again, these are the only two cases possible
due to the constraint above.)

The whole data set is then split into a training set, a dev-
test set, and a test set by uniform random sampling without
replacement in the proportion of 6:2:2.

5.3 Evaluation metrics

For binary classification, besides the standard classifica-

tion accuracy, we also measure precision, recall, and F-measure

as defined in the information retrieval literature [18].
For the multi-class classification, we compute the follow-
ing aggregate metrics suggested by [20]:

e One-accuracy (whether the top-ranked label is among
the correct ones)

e Coverage (how far do we have to go down the ranked
label list to find all the correct ones)

e Average precision (analogous to non-interpolated av-
erage precision frequently used to evaluate document
ranking performance)

We also measure precision, recall, and F-measure for each
individual class label.

6. EXPERIMENTS AND RESULTS

Now we are ready to present the experimental results from
both the binary case and the multi-class case. Notice that
in both cases, the baseline strategy is to assign the label “0”
(i-e., no CST relationship) to all data points, which achieves
an accuracy of 75.13% on the test set.

6.1 Binary classification

For the experiments in this subsection, we trained a bi-
nary classifier that hypothesizes the existence of CST rela-
tionship(s), regardless of type, between a pair of sentences.

6.1.1 Rounds of boosting

An important parameter in boosting is the number of
weak hypotheses. We first try to find the optimal num-
ber of rounds for boosting by optimizing the classification
accuracy on the dev-test set (see figure 2).
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Figure 2: Dev-test performance vs. number of

rounds (binary classification)

It turns out that the accuracy finds its maximum after
around 500 boosting rounds. We then use this parameter to
train the binary classifier and evaluate the performance of
the resulting model on the test set.

6.1.2 Effectiveness of features

Features at different linguistic levels may play different
roles in the classification problem. To test this hypothesis,
we evaluated various performance metrics on the test set by
training the classifier with three different sets of features.
The results are summarized in Table 2.

By looking at the performance numbers in Table 2, one
can notice that the classifier using the full feature vector
(lexical, syntactic, and semantic features) wins by a big mar-
gin over the one using lexical features only. This is reason-
able because the syntactic- and semantic-level features are
supposed to provide valuable information about the topic
and meaning of sentences. However, a little disappointing
is the fact that the semantic features, which were expected
to be useful, don’t seem to help by themselves. We try to
account for this issue in the discussion section.

6.2 Full classification

In this case, we are not only interested in the binary de-
cision regarding the CST-relatedness of a sentence pair, but
also the type(s) of relationship, if any. This is a multi-class
multi-label problem.

6.2.1 Rounds of boosting

Similar to the binary case, we first try to find the optimal
rounds of boosting by optimizing one-accuracy on the dev-
test set (see figure 3).

This time the curve peaks at around 400 boosting rounds.
We then use this parameter to train the full classifier and



| Feature set

|| Accuracy | Precision | Recall | F-measure |

Full feature vector 0.8789 0.8278 0.6477 0.7267
Lexical & syntactic features 0.8775 0.8141 0.6580 0.7278
Lexical Features only 0.8351 0.7560 0.4974 0.6000

Table 2: Performance of classifier trained on different sets of features (binary case)
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Figure 3: Dev-test performance vs. number of

rounds (full classification)

[ CST type [ Precision | Recall | F-measure |
No relationship 0.8905 | 0.9485 0.9186
Equivalence 0.6000 0.2400 0.3429
Subsumption 0.0667 0.0417 0.0513
Follow-up 0.5088 | 0.3222 0.3946
Elaboration 0.4000 0.1795 0.2478
Description 0.2608 0.2143 0.2353
Overlap 0.5581 0.3529 0.4324

Table 4: Classifier performance on individual CST
types

evaluate the performance of the resulting model on the test
set.

6.2.2 Effectiveness of features

Similar to the binary case, again, we measured various
performance metrics on the test set by training the classifier
with three different sets of features. The result is summa-
rized in Table 3.

A similar observation holds as in the binary case. This
time the classifier without semantic features performs even
slightly better than the one with full feature vector.

6.2.3 Performance on individual relationship types

We are also interested in the performance of the multi-

class multi-label classifier on each individual CST type. There-

fore we computed precision, recall, and F-measure for all
CST types that occur more than 20 times in the test data
(see Table 4).

As one can see, the classifier doesn’t perform equally well
on all CST types. It does a decent job on “equivalence”,
“follow-up”, and “overlap”; but on the other hand, “sub-
sumption” appears fairly hard to identify. For the types
that don’t appear in Table 4, the performance is inconclu-

sive, since they don’t occur frequently enough in the data.

6.3 Discussion

The performance of both classifiers is encouraging, how-
ever, the near-ineffectiveness of semantic features comes as
a surprise. Our conjecture is that it can be accounted for
by the following reasons:

e Missing values: when either word in a word pair can-
not be found in Wordnet, the corresponding semantic
distance features will be marked as missing values, ex-
cept in the case of “hso” distance [6], where a value
of 0 is given. In our problem, roughly half of the data
points are subject to this issue. Although most ma-
chine learning algorithms, including boosting, can el-
egantly deal with missing values in general, features
with too many missing values may be considered use-
less or even harmful.

e Head guessing: the lexical heads of top-level NP and
VP may not sufficiently correlate with the key con-
cepts. It might be helpful to investigate deeper repre-
sentations such as the Prague Dependency Treebank
structure [4].

e Scope of semantic comparison: comparing only heads
of top-level NP and VP may not be sufficient. Some-
times the modifiers make a big difference in meaning
even when the heads are the same. If we can come up
with a way to align all content words (such as those
having the 6 POS’s discussed before) across two sen-
tences, a wider scope of semantic differences will be
computed.

We believe that the semantic-level features are very useful
and merit further investigation, although they didn’t show
immediate success in the experiments above.

7. CONCLUSION AND FUTURE WORK

This paper describes an empirical study that uses boosting
to classify cross-document structural relationships between
sentence pairs extracted from various documents. We show
that the binary classifier for determining existence of struc-
tural relationships significantly outperforms baseline, and
promising results are also achieved on the multi-class case
in which the full taxonomy of relationships are considered.

Looking into the future, on the one hand, there is plenty
of room for improving the classifier performance, such as
designing more sophisticated feature vectors (as discussed
above) and experimenting with different machine learning
algorithms. On the other hand, although it is somewhat
reasonable to attribute the unbalanced performance of the
full classifier on individual CST types to the inherent dif-
ference among the underlying linguistic phenomena, it may
also suggest that the label system, i.e., the CST taxonomy,



| Feature set

|| One-Accuracy | Coverage | Average precision |

Full feature vector 0.8093 1.1070 0.8729
Lexical & syntactic features 0.8196 1.0722 0.8793
Lexical Features only 0.7809 1.1830 0.8618

Table 3: Performance of classifier trained on different sets of features (multi-class case)

needs more standardization. If humans have difficulty dif-
ferentiating them, there is probably little hope for a machine
learned classifier to work strikingly well.

The classification problem studied in this paper is still
a somewhat simplified version of the full CST relationship
identification problem. Some relationships have directional-
ity, e.g., sentence 1 following-up sentence 2 is different from
sentence 2 following-up sentence 1. To be able to address
issues like this, more intelligence needs to be built into the
CST identifier.

Another caveat is that the classifiers in the current experi-
ments only look at “local” information within each sentence
pair. In some cases, the “global” context plays an impor-
tant role in determining the CST relationship(s) between
two sentences.

In this paper, we have made the first attempt to show
that automatic identification of CST relationships is feasi-
ble. Various IR-related applications may expect to see im-
provements by exploiting cross-document structure.
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